284 research outputs found

    A Lower Bound on the List-Decodability of Insdel Codes

    Full text link
    For codes equipped with metrics such as Hamming metric, symbol pair metric or cover metric, the Johnson bound guarantees list-decodability of such codes. That is, the Johnson bound provides a lower bound on the list-decoding radius of a code in terms of its relative minimum distance δ\delta, list size LL and the alphabet size q.q. For study of list-decodability of codes with insertion and deletion errors (we call such codes insdel codes), it is natural to ask the open problem whether there is also a Johnson-type bound. The problem was first investigated by Wachter-Zeh and the result was amended by Hayashi and Yasunaga where a lower bound on the list-decodability for insdel codes was derived. The main purpose of this paper is to move a step further towards solving the above open problem. In this work, we provide a new lower bound for the list-decodability of an insdel code. As a consequence, we show that unlike the Johnson bound for codes under other metrics that is tight, the bound on list-decodability of insdel codes given by Hayashi and Yasunaga is not tight. Our main idea is to show that if an insdel code with a given Levenshtein distance dd is not list-decodable with list size LL, then the list decoding radius is lower bounded by a bound involving LL and dd. In other words, if the list decoding radius is less than this lower bound, the code must be list-decodable with list size LL. At the end of the paper we use such bound to provide an insdel-list-decodability bound for various well-known codes, which has not been extensively studied before

    A Novel Construction of Multi-group Decodable Space-Time Block Codes

    Full text link
    Complex Orthogonal Design (COD) codes are known to have the lowest detection complexity among Space-Time Block Codes (STBCs). However, the rate of square COD codes decreases exponentially with the number of transmit antennas. The Quasi-Orthogonal Design (QOD) codes emerged to provide a compromise between rate and complexity as they offer higher rates compared to COD codes at the expense of an increase of decoding complexity through partially relaxing the orthogonality conditions. The QOD codes were then generalized with the so called g-symbol and g-group decodable STBCs where the number of orthogonal groups of symbols is no longer restricted to two as in the QOD case. However, the adopted approach for the construction of such codes is based on sufficient but not necessary conditions which may limit the achievable rates for any number of orthogonal groups. In this paper, we limit ourselves to the case of Unitary Weight (UW)-g-group decodable STBCs for 2^a transmit antennas where the weight matrices are required to be single thread matrices with non-zero entries in {1,-1,j,-j} and address the problem of finding the highest achievable rate for any number of orthogonal groups. This special type of weight matrices guarantees full symbol-wise diversity and subsumes a wide range of existing codes in the literature. We show that in this case an exhaustive search can be applied to find the maximum achievable rates for UW-g-group decodable STBCs with g>1. For this purpose, we extend our previously proposed approach for constructing UW-2-group decodable STBCs based on necessary and sufficient conditions to the case of UW-g-group decodable STBCs in a recursive manner.Comment: 12 pages, and 5 tables, accepted for publication in IEEE transactions on communication

    Combinatorial limitations of average-radius list-decoding

    Full text link
    We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between the known upper bound (of O(1/γ)O(1/\gamma)) and lower bound (of Ωp(log(1/γ))\Omega_p(\log (1/\gamma))) for the list-size needed to decode up to radius pp with rate γ\gamma away from capacity, i.e., 1-\h(p)-\gamma (here p(0,1/2)p\in (0,1/2) and γ>0\gamma > 0). Our main result is the following: We prove that in any binary code C{0,1}nC \subseteq \{0,1\}^n of rate 1-\h(p)-\gamma, there must exist a set LC\mathcal{L} \subset C of Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords such that the average distance of the points in L\mathcal{L} from their centroid is at most pnpn. In other words, there must exist Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords with low "average radius." The standard notion of list-decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average-radius form is in itself quite natural and is implied by the classical Johnson bound. The remaining results concern the standard notion of list-decoding, and help clarify the combinatorial landscape of list-decoding: 1. We give a short simple proof, over all fixed alphabets, of the above-mentioned Ωp(log(γ))\Omega_p(\log (\gamma)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. 2. We show that one {\em cannot} improve the Ωp(log(1/γ))\Omega_p(\log (1/\gamma)) lower bound via techniques based on identifying the zero-rate regime for list decoding of constant-weight codes. 3. We show a "reverse connection" showing that constant-weight codes for list decoding imply general codes for list decoding with higher rate. 4. We give simple second moment based proofs of tight (up to constant factors) lower bounds on the list-size needed for list decoding random codes and random linear codes from errors as well as erasures.Comment: 28 pages. Extended abstract in RANDOM 201

    Locally Encodable and Decodable Codes for Distributed Storage Systems

    Full text link
    We consider the locality of encoding and decoding operations in distributed storage systems (DSS), and propose a new class of codes, called locally encodable and decodable codes (LEDC), that provides a higher degree of operational locality compared to currently known codes. For a given locality structure, we derive an upper bound on the global distance and demonstrate the existence of an optimal LEDC for sufficiently large field size. In addition, we also construct two families of optimal LEDC for fields with size linear in code length.Comment: 7 page

    STBCs from Representation of Extended Clifford Algebras

    Full text link
    A set of sufficient conditions to construct λ\lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for λ=2a,aN\lambda=2^a,a\in\mathbb{N} is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.Comment: 5 pages, no figures, To appear in Proceedings of IEEE ISIT 2007, Nice, Franc
    corecore