977 research outputs found

    Computational ability of LSM ensemble in the model of mammalian visual system

    Get PDF
    Ensembles of artificial Hodgkin-Huxley neural microcircuits are examined. The networks discussed in this article simulate the cortex of the primate visual system. We use a modular architecture of the cortex divided into columns. The results of parallel simulations based on the liquid computing theory are presented in some detail. Separation ability of groups of neural microcircuits is observed. We show that such property may be useful for explaining some pattern recognition phenomena

    Liquid state machine built of Hodgkin-Huxley neurons-pattern recognition and informational entropy

    Get PDF
    Neural networks built of Hodgkin-Huxley neurons are examined. Such structures behave like Liquid State Machines. They can effectively process geometrical patterns shown to artificial retina into precisely defined output. The analysis of output responses is performed in two ways: by means of Artificial Neural Network and by calculating informational entropy

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Collective stability of networks of winner-take-all circuits

    Full text link
    The neocortex has a remarkably uniform neuronal organization, suggesting that common principles of processing are employed throughout its extent. In particular, the patterns of connectivity observed in the superficial layers of the visual cortex are consistent with the recurrent excitation and inhibitory feedback required for cooperative-competitive circuits such as the soft winner-take-all (WTA). WTA circuits offer interesting computational properties such as selective amplification, signal restoration, and decision making. But, these properties depend on the signal gain derived from positive feedback, and so there is a critical trade-off between providing feedback strong enough to support the sophisticated computations, while maintaining overall circuit stability. We consider the question of how to reason about stability in very large distributed networks of such circuits. We approach this problem by approximating the regular cortical architecture as many interconnected cooperative-competitive modules. We demonstrate that by properly understanding the behavior of this small computational module, one can reason over the stability and convergence of very large networks composed of these modules. We obtain parameter ranges in which the WTA circuit operates in a high-gain regime, is stable, and can be aggregated arbitrarily to form large stable networks. We use nonlinear Contraction Theory to establish conditions for stability in the fully nonlinear case, and verify these solutions using numerical simulations. The derived bounds allow modes of operation in which the WTA network is multi-stable and exhibits state-dependent persistent activities. Our approach is sufficiently general to reason systematically about the stability of any network, biological or technological, composed of networks of small modules that express competition through shared inhibition.Comment: 7 Figure

    Hebbian encoding in the biological visual system

    Get PDF
    We examined neural networks built of several hundred Hodgkin-Huxley neurons. The main aim of the research described below was to simulate memory processes occurring in hippocampus and biological visual system. In our model we chose the ancient Chinese I-Ching Oracle as a set of input patterns. Maps of Hebbian weights appearing on the output device of the model can be analysed by artificial neural networks playing a role of some kind of visual consciousness

    Transient Information Flow in a Network of Excitatory and Inhibitory Model Neurons: Role of Noise and Signal Autocorrelation

    Get PDF
    We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information processing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an oscillatory firing regime to a state of asynchronous irregular firing or quiescence depending on the rate of external background spikes. We find that in terms of information buffering the network performs best for a moderate, non-zero, amount of noise. Analogous to the phenomenon of stochastic resonance the performance decreases for higher and lower noise levels. The optimal amount of noise corresponds to the transition zone between a quiescent state and a regime of stochastic dynamics. This provides a potential explanation on the role of non-oscillatory population activity in a simplified model of cortical micro-circuits.Comment: 27 pages, 7 figures, to appear in J. Physiology (Paris) Vol. 9

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD

    Fate of Duplicated Neural Structures

    Full text link
    Statistical mechanics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical mechanics, computation, and (through their role in cognition) natural selection. Can we establish a {\em statistical physics} of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with a stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this we derive {\em phase diagrams} and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical mechanics seems a natural framework for thsi worthy line of research.Comment: Review with novel results. Position paper. 16 pages, 3 figure
    • …
    corecore