208 research outputs found

    Transformer-based NMT : modeling, training and implementation

    Get PDF
    International trade and industrial collaborations enable countries and regions to concentrate their developments on specific industries while making the most of other countries' specializations, which significantly accelerates global development. However, globalization also increases the demand for cross-region communication. Language barriers between many languages worldwide create a challenge for achieving deep collaboration between groups speaking different languages, increasing the need for translation. Language technology, specifically, Machine Translation (MT) holds the promise to enable communication between languages efficiently in real-time with minimal costs. Even though nowadays computers can perform computation in parallel very fast, which provides machine translation users with translations with very low latency, and although the evolution from Statistical Machine Translation (SMT) to Neural Machine Translation (NMT) with the utilization of advanced deep learning algorithms has significantly boosted translation quality, current machine translation algorithms are still far from accurately translating all input. Thus, how to further improve the performance of state-of-the-art NMT algorithm remains a valuable open research question which has received a wide range of attention. In the research presented in this thesis, we first investigate the long-distance relation modeling ability of the state-of-the-art NMT model, the Transformer. We propose to learn source phrase representations and incorporate them into the Transformer translation model, aiming to enhance its ability to capture long-distance dependencies well. Second, though previous work (Bapna et al., 2018) suggests that deep Transformers have difficulty in converging, we empirically find that the convergence of deep Transformers depends on the interaction between the layer normalization and residual connections employed to stabilize its training. We conduct a theoretical study about how to ensure the convergence of Transformers, especially for deep Transformers, and propose to ensure the convergence of deep Transformers by putting the Lipschitz constraint on its parameter initialization. Finally, we investigate how to dynamically determine proper and efficient batch sizes during the training of the Transformer model. We find that the gradient direction gets stabilized with increasing batch size during gradient accumulation. Thus we propose to dynamically adjust batch sizes during training by monitoring the gradient direction change within gradient accumulation, and to achieve a proper and efficient batch size by stopping the gradient accumulation when the gradient direction starts to fluctuate. For our research in this thesis, we also implement our own NMT toolkit, the Neutron implementation of the Transformer and its variants. In addition to providing fundamental features as the basis of our implementations for the approaches presented in this thesis, we support many advanced features from recent cutting-edge research work. Implementations of all our approaches in this thesis are also included and open-sourced in the toolkit. To compare with previous approaches, we mainly conducted our experiments on the data from the WMT 14 English to German (En-De) and English to French (En-Fr) news translation tasks, except when studying the convergence of deep Transformers, where we alternated the WMT 14 En-Fr task with the WMT 15 Czech to English (Cs-En) news translation task to compare with Bapna et al. (2018). The sizes of these datasets vary from medium (the WMT 14 En-De, ~ 4.5M sentence pairs) to very large (the WMT 14 En-Fr, ~ 36M sentence pairs), thus we suggest our approaches help improve the translation quality between popular language pairs which are widely used and have sufficient data.China Scholarship Counci

    Understanding Optimization of Deep Learning via Jacobian Matrix and Lipschitz Constant

    Full text link
    This article provides a comprehensive understanding of optimization in deep learning, with a primary focus on the challenges of gradient vanishing and gradient exploding, which normally lead to diminished model representational ability and training instability, respectively. We analyze these two challenges through several strategic measures, including the improvement of gradient flow and the imposition of constraints on a network's Lipschitz constant. To help understand the current optimization methodologies, we categorize them into two classes: explicit optimization and implicit optimization. Explicit optimization methods involve direct manipulation of optimizer parameters, including weight, gradient, learning rate, and weight decay. Implicit optimization methods, by contrast, focus on improving the overall landscape of a network by enhancing its modules, such as residual shortcuts, normalization methods, attention mechanisms, and activations. In this article, we provide an in-depth analysis of these two optimization classes and undertake a thorough examination of the Jacobian matrices and the Lipschitz constants of many widely used deep learning modules, highlighting existing issues as well as potential improvements. Moreover, we also conduct a series of analytical experiments to substantiate our theoretical discussions. This article does not aim to propose a new optimizer or network. Rather, our intention is to present a comprehensive understanding of optimization in deep learning. We hope that this article will assist readers in gaining a deeper insight in this field and encourages the development of more robust, efficient, and high-performing models.Comment: International Digital Economy Academy (IDEA

    LipsFormer: Introducing Lipschitz Continuity to Vision Transformers

    Full text link
    We present a Lipschitz continuous Transformer, called LipsFormer, to pursue training stability both theoretically and empirically for Transformer-based models. In contrast to previous practical tricks that address training instability by learning rate warmup, layer normalization, attention formulation, and weight initialization, we show that Lipschitz continuity is a more essential property to ensure training stability. In LipsFormer, we replace unstable Transformer component modules with Lipschitz continuous counterparts: CenterNorm instead of LayerNorm, spectral initialization instead of Xavier initialization, scaled cosine similarity attention instead of dot-product attention, and weighted residual shortcut. We prove that these introduced modules are Lipschitz continuous and derive an upper bound on the Lipschitz constant of LipsFormer. Our experiments show that LipsFormer allows stable training of deep Transformer architectures without the need of careful learning rate tuning such as warmup, yielding a faster convergence and better generalization. As a result, on the ImageNet 1K dataset, LipsFormer-Swin-Tiny based on Swin Transformer training for 300 epochs can obtain 82.7\% without any learning rate warmup. Moreover, LipsFormer-CSwin-Tiny, based on CSwin, training for 300 epochs achieves a top-1 accuracy of 83.5\% with 4.7G FLOPs and 24M parameters. The code will be released at \url{https://github.com/IDEA-Research/LipsFormer}.Comment: To appear in ICLR 2023, our code will be public at https://github.com/IDEA-Research/LipsForme

    Optimizing Deep Transformers for Chinese-Thai Low-Resource Translation

    Full text link
    In this paper, we study the use of deep Transformer translation model for the CCMT 2022 Chinese-Thai low-resource machine translation task. We first explore the experiment settings (including the number of BPE merge operations, dropout probability, embedding size, etc.) for the low-resource scenario with the 6-layer Transformer. Considering that increasing the number of layers also increases the regularization on new model parameters (dropout modules are also introduced when using more layers), we adopt the highest performance setting but increase the depth of the Transformer to 24 layers to obtain improved translation quality. Our work obtains the SOTA performance in the Chinese-to-Thai translation in the constrained evaluation

    What can a Single Attention Layer Learn? A Study Through the Random Features Lens

    Full text link
    Attention layers -- which map a sequence of inputs to a sequence of outputs -- are core building blocks of the Transformer architecture which has achieved significant breakthroughs in modern artificial intelligence. This paper presents a rigorous theoretical study on the learning and generalization of a single multi-head attention layer, with a sequence of key vectors and a separate query vector as input. We consider the random feature setting where the attention layer has a large number of heads, with randomly sampled frozen query and key matrices, and trainable value matrices. We show that such a random-feature attention layer can express a broad class of target functions that are permutation invariant to the key vectors. We further provide quantitative excess risk bounds for learning these target functions from finite samples, using random feature attention with finitely many heads. Our results feature several implications unique to the attention structure compared with existing random features theory for neural networks, such as (1) Advantages in the sample complexity over standard two-layer random-feature networks; (2) Concrete and natural classes of functions that can be learned efficiently by a random-feature attention layer; and (3) The effect of the sampling distribution of the query-key weight matrix (the product of the query and key matrix), where Gaussian random weights with a non-zero mean result in better sample complexities over the zero-mean counterpart for learning certain natural target functions. Experiments on simulated data corroborate our theoretical findings and further illustrate the interplay between the sample size and the complexity of the target function.Comment: 41pages, 5 figure

    DoWG Unleashed: An Efficient Universal Parameter-Free Gradient Descent Method

    Full text link
    This paper proposes a new easy-to-implement parameter-free gradient-based optimizer: DoWG (Distance over Weighted Gradients). We prove that DoWG is efficient -- matching the convergence rate of optimally tuned gradient descent in convex optimization up to a logarithmic factor without tuning any parameters, and universal -- automatically adapting to both smooth and nonsmooth problems. While popular algorithms following the AdaGrad framework compute a running average of the squared gradients to use for normalization, DoWG maintains a new distance-based weighted version of the running average, which is crucial to achieve the desired properties. To complement our theory, we also show empirically that DoWG trains at the edge of stability, and validate its effectiveness on practical machine learning tasks.Comment: 22 pages, 1 table, 4 figure

    Robust Fine-Tuning of Deep Neural Networks with Hessian-based Generalization Guarantees

    Full text link
    We consider transfer learning approaches that fine-tune a pretrained deep neural network on a target task. We study generalization properties of fine-tuning to understand the problem of overfitting, which commonly occurs in practice. Previous works have shown that constraining the distance from the initialization of fine-tuning improves generalization. Using a PAC-Bayesian analysis, we observe that besides distance from initialization, Hessians affect generalization through the noise stability of deep neural networks against noise injections. Motivated by the observation, we develop Hessian distance-based generalization bounds for a wide range of fine-tuning methods. Additionally, we study the robustness of fine-tuning in the presence of noisy labels. Motivated by our theory, we design an algorithm that incorporates consistent losses and distance-based regularization for fine-tuning, along with a generalization error guarantee under class conditional independent noise in the training set labels. We perform a detailed empirical study of our algorithm on various noisy environments and architectures. On six image classification tasks whose training labels are generated with programmatic labeling, we find a 3.26% accuracy gain over prior fine-tuning methods. Meanwhile, the Hessian distance measure of the fine-tuned model decreases by six times more than existing approaches.Comment: 36 pages, 5 figures, 8 tables; ICML 202

    On Separate Normalization in Self-supervised Transformers

    Full text link
    Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the [CLS] symbol and the tokens. We propose in this paper a simple modification that employs separate normalization layers for the tokens and the [CLS] symbol to better capture their distinct characteristics and enhance downstream task performance. Our method aims to alleviate the potential negative effects of using the same normalization statistics for both token types, which may not be optimally aligned with their individual roles. We empirically show that by utilizing a separate normalization layer, the [CLS] embeddings can better encode the global contextual information and are distributed more uniformly in its anisotropic space. When replacing the conventional normalization layer with the two separate layers, we observe an average 2.7% performance improvement over the image, natural language, and graph domains.Comment: NIPS 202
    • …
    corecore