9,216 research outputs found

    The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca

    Get PDF
    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal activities very close to those previously reported for vegetative cells. Identification of three lipopeptide antibiotics, surfactin, fengycin, and iturin A or bacillomycin, in butanolic extracts from cell-free culture filtrates of these B. subtilis strains pointed out that antibiosis could be a major factor involved in their biocontrol ability. The strong inhibitory effect of purified lipopeptide fractions corresponding to bacillomycin, fengycin, and iturin A on P. fusca conidia germination, as well as the in situ detection of these lipopeptides in bacterial-treated melon leaves, provided interesting evidence of their putative involvement in the antagonistic activity. Those results were definitively supported by site-directed mutagenesis analysis, targeted to suppress the biosynthesis of the different lipopeptides. Taken together, our data have allowed us to conclude that the iturin and fengycin families of lipopeptides have a major role in the antagonism of B. subtilis toward P. fusca.

    The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca

    Get PDF
    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal activities very close to those previously reported for vegetative cells. Identification of three lipopeptide antibiotics, surfactin, fengycin, and iturin A or bacillomycin, in butanolic extracts from cell-free culture filtrates of these B. subtilis strains pointed out that antibiosis could be a major factor involved in their biocontrol ability. The strong inhibitory effect of purified lipopeptide fractions corresponding to bacillomycin, fengycin, and iturin A on P. fusca conidia germination, as well as the in situ detection of these lipopeptides in bacterial-treated melon leaves, provided interesting evidence of their putative involvement in the antagonistic activity. Those results were definitively supported by site-directed mutagenesis analysis, targeted to suppress the biosynthesis of the different lipopeptides. Taken together, our data have allowed us to conclude that the iturin and fengycin families of lipopeptides have a major role in the antagonism of B. subtilis toward P. fusca.

    Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles

    Get PDF
    The study concerns surfactin and/or fengycin batch production by immobilized cells of Bacillus subtilis ATCC 21332. Light carriers designed for a three phase inverse fluidized bed biofilm reactor (TPFIBR) were used. With respect to the biofilm reactor development, a new support based on iron grafting onto polypropylene foams has been proposed. A suspension solid-state grafting process was applied to graft ferric acetylacetonate onto polypropylene (PP) foams with a density of 0.3–0.7 g/cm3. The iron contents grafted onto PP increased with the reaction time and then it tended to level off. The iron contents at 7.5 and 10 h are 0.74 and 0.75 wt%, respectively. It was specified that the equilibrium was reached at 7.5 h. Influence of particles on lipopeptide production was analyzed in two kinds of experiments: preliminary colonization step of particles, followed by production step in modified culture medium (named in this work colonization step) or direct addition of pellets in culturemedium (named production step). All PP+ iron pellets promoted biomass enhancement. The production yield was modified for all types of PP supports, containing respectively 0, 0.35 and 0.75% of iron. The immobilized cultures produced 2.09–4.3 times more biosurfactants than planktonic cells. In production experiments addition of carriers seemed tomodify the ratio between surfactin and fengycin with an enhancement of the fengycin production. The highest concentration of fengycin was obtained with addition of pellets containing 0.35% of iron

    Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: Basic Research and Translational Opportunities.

    Get PDF
    Innate immune mechanisms that follow early recognition of microbes influence the nature and magnitude of subsequent adaptive immune responses. Early detection of microbes depends on pattern recognition receptors that sense pathogen-associated molecular patterns or microbial-associated molecular patterns (PAMPS or MAMPs, respectively). The bacterial envelope contains MAMPs that include membrane proteins, lipopeptides, glycopolymers, and other pro-inflammatory molecules. Bacteria are selected by environmental pressures resulting in quantitative or qualitative changes in their envelope structures that often promote evasion of host immune responses and therefore, infection. However, recent studies have shown that slight, adaptive changes in MAMPs on the bacterial cell wall may result in their ability to induce the secretion not only of pro-inflammatory cytokines but also of anti-inflammatory cytokines. This effect can fine-tune the subsequent response to microbes expressing these MAMPs and lead to the establishment of a commensal state within the host rather than infectious disease. In this review, we will examine the plasticity of Toll-like receptor (TLR) 2 signaling as evidence of evolving MAMPs, using the better-characterized TLR4 as a template. We will review the role of differential dimerization of TLR2 and the arrangement of signaling complexes and co-receptors in determining the capacity of the host to recognize an array of TLR2 ligands and generate different immune responses to these ligands. Last, we will assess briefly how this plasticity may expand the array of interactions between microbes and immune systems beyond the traditional disease-causing paradigm

    Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism

    Get PDF
    Beneficial Pseudomonas spp. produce an array of antimicrobial secondary metabolites such as cyclic lipopeptides (CLPs). We investigated the capacity of CLP-producing Pseudomonas strains and their crude CLP extracts to control rice blast caused by Magnaporthe oryzae, both in a direct manner and via induced systemic resistance (ISR). In planta biocontrol assays showed that lokisin-, white line inducing principle (WLIP)-, entolysin- and N3-producing strains successfully induced resistance to M. oryzae VT5M1. Furthermore, crude extracts of lokisin, WLIP and entolysin gave similar ISR results when tested in planta. In contrast, a xantholysin-producing strain and crude extracts of N3, xantholysin and orfamide did not induce resistance against the rice blast disease. The role of WLIP in triggering ISR was further confirmed by using WLIP-deficient mutants. The severity of rice blast disease was significantly reduced when M. oryzae spores were pre-treated with crude extracts of N3, lokisin, WLIP, entolysin or orfamide prior to inoculation. In vitro microscopic assays further revealed the capacity of crude N3, lokisin, WLIP, entolysin, xantholysin and orfamide to significantly inhibit appressoria formation by M. oryzae. In addition, the lokisin and WLIP biosynthetic gene clusters in the producing strains are described. In short, our study demonstrates the biological activity of structurally diverse CLPs in the control of the rice blast disease caused by M. oryzae. Furthermore, we provide insight into the non-ribosomal peptide synthetase genes encoding the WLIP and lokisin biosynthetic machineries

    Self-assembly, nematic phase formation and organocatalytic behaviour of a proline-functionalized lipopeptide

    Get PDF
    The self-assembly of the amphiphilic lipopeptide PAEPKI-C16 (P = proline, A = alanine, E = glutamic acid, K = lysine, I = isoleucine, C16 = hexadecyl) was investigated using a combination of spectroscopic, microscopic and scattering methods and compared to C16-IKPEAP with the same (reversed) peptide sequence and the alkyl chain positioned N-terminally and which lacks a free N-terminal proline residue. The catalytic activity of these peptides were then compared using a model aldol reaction system. For PAEPKI-C16, Cryo-TEM images showed the formation of micrometer length fibers, which by Small-angle X-ray scattering (SAXS) were found to have a radius of 2.5 - 2.6 nm. Spectroscopic analysis shows these fibers are built from -sheets. This behaviour is in complete contrast to that of C16-IKPEAP which forms spherical micelles with peptides in a disordered conformation [Hutchinson, J. A. et al. J. Phys. Chem. B 2019, 123, 613]. For PAEPKI-C16, the spontaneous alignment of fibers was observed upon increasing pH, which was accompanied by observed birefringence and anisotropy of SAXS patterns. This shows the formation of a nematic liquids and unprecedented nematic hydrogel formation was also observed these lipopeptides at sufficiently high concentrations. SAXS shows retention of an ultrafine (1.7 nm core radius) fibrillar network within the hydrogel. PAEPKI-C16 with free N-terminal proline shows enhanced anti:syn diastereoselectivity and better conversion compared to C16-IKPEAP. The cytotoxicity of PAEPKI-C16 was also lower than C16-IKPEAP for both fibroblast and cancer cell lines. These results highlight the sensitivity of lipopeptide properties to the presence of a free proline residue. The spontaneous nematic phase formation by PAEPKI-C16 points to the highly anisotropy of its ultrafine fibrillar structure and the formation of such a phase at low concentration in aqueous solution may be valuable for future applications

    The TLR2/6 ligand PAM2CSK4 is a Th2 polarizing adjuvant in Leishmania major and Brugia malayi murine vaccine models.

    Get PDF
    Toll-like receptors (TLRs) play an important role in the innate and adaptive immune responses to pathogens, and are the target of new vaccine adjuvants. TLR2 plays a role in parasite recognition and activation of immune responses during cutaneous leishmaniasis infection, suggesting that TLR2 could be targeted by adjuvants for use in Leishmania vaccines. We therefore explored using Pam2CSK4 (Pam2) and Pam3CSK4 (Pam3) lipopeptide adjuvants, which activate TLR2/6 and TLR2/1 heterodimers respectively, in vaccine models for parasitic infections.The use of lipopeptide adjuvants was explored using two vaccine models. For cutaneous leishmaniasis, the lipopeptide adjuvants Pam2 and Pam3 were compared to that of the Th1-driving double-stranded DNA TLR9 agonist CpG for their ability to improve the efficacy of the autoclaved Leishmania major (ALM) vaccine to protect against L. major infection. The ability of Pam2 to enhance the efficacy of a soluble Brugia malayi microfilariae extract (BmMfE) vaccine to protect against filarial infection was also assessed in a peritoneal infection model of B. malayi filariasis. Parasite antigen-specific cellular and humoral immune responses were assessed post-challenge.The use of lipopeptides in ALM-containing vaccines did not provide any protection upon infection with L. major, and Pam2 exacerbated the disease severity in vaccinated mice post-challenge. Pam2, and to a lesser extent Pam3, were able to elevate antigen-specific immune responses post-challenge in this model, but these responses displayed a skewed Th2 phenotype as characterised by elevated levels of IgG1. In the B. malayi vaccine model, the use of Pam2 as an adjuvant with BmMfE induced significant protective immunity to the same level as inclusion of an Alum adjuvant. Here, both Pam2 and Alum were found to enhance antigen-specific antibody production post-challenge, and Pam2 significantly elevated levels of antigen-specific IL-4, IL-5 and IL-13 produced by splenocytes.These data indicate that TLR2/6-targeting ligands could be considered as adjuvants for vaccines that require robust Th2 and/or antibody-dependent immunity

    Unraveling the senses of Phytophthora; leads to novel control strategies?

    Get PDF
    Oomycetes cause devastating diseases on plants and animals. They cause major yield losses in many crop plants and their control heavily depends on agrochemicals. This is certainly true for the potato late blight pathogen Phytophthora infestans. Strong concerns about adverse effects of agrochemicals on food safety and environment are incentives for the development of novel, environmental friendly control strategies preferably based on natural products. Cyclic lipopeptides (CLPs) were recently discovered as a new class of natural compounds with strong activities against oomycetes including Phytophthora. CLPs lyse zoospores, inhibit mycelial growth and effectively reduce late blight disease. In order to unravel how Phytophthora senses CLPs and other environmental signals we follow two approaches. On the one hand, we monitor genome wide changes in gene expression induced by CLPs with the aim to identify the cellular pathways targeted by CLPs. On the other hand, we analyse components of ubiquitous signal transduction pathways with the aim to identify features that are unique for Phytophthora or oomycetes and, hence, could be suitable targets for novel anti-oomycete agents. Mining and comparing whole genome sequences have revealed that Phytophthora harbours many novel phospholipid modifying enzymes, unique for oomycetes. They have aberrant combinations of catalytic and regulatory domains occasionally combined with transmembrane domains. The latter resemble receptors that might be activated by extracellular ligands. Phospholipids, the substrates of these enzymes, are structural membrane components that also function in signalling. Together these findings open new avenues of research aimed at target-discovery in oomycetes

    Antioxidant properties of Enterobacter cloacae C3 lipopeptides in vitro and in model food emulsion

    Get PDF
    The present work aims to investigate the in vitro antioxidant activities of Enterobacter cloacae C3 lipopeptides, as well as the stability of sunflower oil in water (o/w) emulsion and the conservation of raw beef patties. The C3 lipopeptides were assayed for their antioxidant activity through five different tests. The C3 lipopeptides showed good in vitro antioxidant activities. Lipopeptides C3 exhibited important antioxidant properties in 10% sunflower o/w emulsions during prolonged storage (28 days) at 30°C. The effect of C3 lipopeptides on the oxidative stability of raw beef patties showed effectiveness effect in preventing oxidative degradation of lipids via thiobarbituric acid reactive substance and peroxide methods. Cytotoxicity test using human kidney HEK293 cells showed that studied lipopeptides was nontoxic substances. The results of this study indicate that lipopeptides C3 could be appropriate antioxidant agent in food models as inhibitors of lipid oxidation.Peer ReviewedPostprint (author's final draft
    corecore