140 research outputs found

    A Practical and Configurable Lip Sync Method for Games

    Full text link

    An Implementation of Multimodal Fusion System for Intelligent Digital Human Generation

    Full text link
    With the rapid development of artificial intelligence (AI), digital humans have attracted more and more attention and are expected to achieve a wide range of applications in several industries. Then, most of the existing digital humans still rely on manual modeling by designers, which is a cumbersome process and has a long development cycle. Therefore, facing the rise of digital humans, there is an urgent need for a digital human generation system combined with AI to improve development efficiency. In this paper, an implementation scheme of an intelligent digital human generation system with multimodal fusion is proposed. Specifically, text, speech and image are taken as inputs, and interactive speech is synthesized using large language model (LLM), voiceprint extraction, and text-to-speech conversion techniques. Then the input image is age-transformed and a suitable image is selected as the driving image. Then, the modification and generation of digital human video content is realized by digital human driving, novel view synthesis, and intelligent dressing techniques. Finally, we enhance the user experience through style transfer, super-resolution, and quality evaluation. Experimental results show that the system can effectively realize digital human generation. The related code is released at https://github.com/zyj-2000/CUMT_2D_PhotoSpeaker

    TEXT-DRIVEN MOUTH ANIMATION FOR HUMAN COMPUTER INTERACTION WITH PERSONAL ASSISTANT

    Get PDF
    International audiencePersonal assistants are becoming more pervasive in our environments but still do not provide natural interactions. Their lack of realism in term of expressiveness and their lack of visual feedback can create frustrating experiences and make users lose patience. In this sense, we propose an end-to-end trainable neural architecture for text-driven 3D mouth animations. Previous works showed such architectures provide better realism and could open the door for integrated affective Human Computer Interface (HCI). Our study shows that such visual feedback improves users' comfort for 78% of the candidates significantly while slightly improving their time perception

    VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild

    Full text link
    We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.Comment: Accepted by SIGGRAPH Asia 2022 Conference Proceedings. Project page: https://vinthony.github.io/video-retalking

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    DualTalker: A Cross-Modal Dual Learning Approach for Speech-Driven 3D Facial Animation

    Full text link
    In recent years, audio-driven 3D facial animation has gained significant attention, particularly in applications such as virtual reality, gaming, and video conferencing. However, accurately modeling the intricate and subtle dynamics of facial expressions remains a challenge. Most existing studies approach the facial animation task as a single regression problem, which often fail to capture the intrinsic inter-modal relationship between speech signals and 3D facial animation and overlook their inherent consistency. Moreover, due to the limited availability of 3D-audio-visual datasets, approaches learning with small-size samples have poor generalizability that decreases the performance. To address these issues, in this study, we propose a cross-modal dual-learning framework, termed DualTalker, aiming at improving data usage efficiency as well as relating cross-modal dependencies. The framework is trained jointly with the primary task (audio-driven facial animation) and its dual task (lip reading) and shares common audio/motion encoder components. Our joint training framework facilitates more efficient data usage by leveraging information from both tasks and explicitly capitalizing on the complementary relationship between facial motion and audio to improve performance. Furthermore, we introduce an auxiliary cross-modal consistency loss to mitigate the potential over-smoothing underlying the cross-modal complementary representations, enhancing the mapping of subtle facial expression dynamics. Through extensive experiments and a perceptual user study conducted on the VOCA and BIWI datasets, we demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively. We have made our code and video demonstrations available at https://github.com/sabrina-su/iadf.git

    OSM-Net: One-to-Many One-shot Talking Head Generation with Spontaneous Head Motions

    Full text link
    One-shot talking head generation has no explicit head movement reference, thus it is difficult to generate talking heads with head motions. Some existing works only edit the mouth area and generate still talking heads, leading to unreal talking head performance. Other works construct one-to-one mapping between audio signal and head motion sequences, introducing ambiguity correspondences into the mapping since people can behave differently in head motions when speaking the same content. This unreasonable mapping form fails to model the diversity and produces either nearly static or even exaggerated head motions, which are unnatural and strange. Therefore, the one-shot talking head generation task is actually a one-to-many ill-posed problem and people present diverse head motions when speaking. Based on the above observation, we propose OSM-Net, a \textit{one-to-many} one-shot talking head generation network with natural head motions. OSM-Net constructs a motion space that contains rich and various clip-level head motion features. Each basis of the space represents a feature of meaningful head motion in a clip rather than just a frame, thus providing more coherent and natural motion changes in talking heads. The driving audio is mapped into the motion space, around which various motion features can be sampled within a reasonable range to achieve the one-to-many mapping. Besides, the landmark constraint and time window feature input improve the accurate expression feature extraction and video generation. Extensive experiments show that OSM-Net generates more natural realistic head motions under reasonable one-to-many mapping paradigm compared with other methods.Comment: Paper Under Revie

    Coarticulation and speech synchronization in MPEG-4 based facial animation

    Get PDF
    In this paper, we present a novel coarticulation and speech synchronization framework compliant with MPEG-4 facial animation. The system we have developed uses MPEG-4 facial animation standard and other development to enable the creation, editing and playback of high resolution 3D models; MPEG-4 animation streams; and is compatible with well-known related systems such as Greta and Xface. It supports text-to-speech for dynamic speech synchronization. The framework enables real-time model simplification using quadric-based surfaces. Our coarticulation approach provides realistic and high performance lip-sync animation, based on Cohen-Massaro’s model of coarticulation adapted to MPEG-4 facial animation (FA) specification. The preliminary experiments show that the coarticulation technique we have developed gives overall good and promising results when compared to related techniques

    A physically-based muscle and skin model for facial animation

    Get PDF
    Facial animation is a popular area of research which has been around for over thirty years, but even with this long time scale, automatically creating realistic facial expressions is still an unsolved goal. This work furthers the state of the art in computer facial animation by introducing a new muscle and skin model and a method of easily transferring a full muscle and bone animation setup from one head mesh to another with very little user input. The developed muscle model allows muscles of any shape to be accurately simulated, preserving volume during contraction and interacting with surrounding muscles and skin in a lifelike manner. The muscles can drive a rigid body model of a jaw, giving realistic physically-based movement to all areas of the face. The skin model has multiple layers, mimicking the natural structure of skin and it connects onto the muscle model and is deformed realistically by the movements of the muscles and underlying bones. The skin smoothly transfers underlying movements into skin surface movements and propagates forces smoothly across the face. Once a head model has been set up with muscles and bones, moving this muscle and bone set to another head is a simple matter using the developed techniques. The developed software employs principles from forensic reconstruction, using specific landmarks on the head to map the bone and muscles to the new head model and once the muscles and skull have been quickly transferred, they provide animation capabilities on the new mesh within minutes

    Audio-Visual Biometrics and Forgery

    Get PDF
    • …
    corecore