2,125 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    TEXTUAL DATA MINING FOR NEXT GENERATION INTELLIGENT DECISION MAKING IN INDUSTRIAL ENVIRONMENT: A SURVEY

    Get PDF
    This paper proposes textual data mining as a next generation intelligent decision making technology for sustainable knowledge management solutions in any industrial environment. A detailed survey of applications of Data Mining techniques for exploiting information from different data formats and transforming this information into knowledge is presented in the literature survey. The focus of the survey is to show the power of different data mining techniques for exploiting information from data. The literature surveyed in this paper shows that intelligent decision making is of great importance in many contexts within manufacturing, construction and business generally. Business intelligence tools, which can be interpreted as decision support tools, are of increasing importance to companies for their success within competitive global markets. However, these tools are dependent on the relevancy, accuracy and overall quality of the knowledge on which they are based and which they use. Thus the research work presented in the paper uncover the importance and power of different data mining techniques supported by text mining methods used to exploit information from semi-structured or un-structured data formats. A great source of information is available in these formats and when exploited by combined efforts of data and text mining tools help the decision maker to take effective decision for the enhancement of business of industry and discovery of useful knowledge is made for next generation of intelligent decision making. Thus the survey shows the power of textual data mining as the next generation technology for intelligent decision making in the industrial environment

    EXPLOITING HIGHER ORDER UNCERTAINTY IN IMAGE ANALYSIS

    Get PDF
    Soft computing is a group of methodologies that works synergistically to provide flexible information processing capability for handling real-life ambiguous situations. Its aim is to exploit the tolerance for imprecision, uncertainty, approximate reasoning, and partial truth in order to achieve tractability, robustness, and low-cost solutions. Soft computing methodologies (involving fuzzy sets, neural networks, genetic algorithms, and rough sets) have been successfully employed in various image processing tasks including image segmentation, enhancement and classification, both individually or in combination with other soft computing techniques. The reason of such success has its motivation in the fact that soft computing techniques provide a powerful tools to describe uncertainty, naturally embedded in images, which can be exploited in various image processing tasks. The main contribution of this thesis is to present tools for handling uncertainty by means of a rough-fuzzy framework for exploiting feature level uncertainty. The first contribution is the definition of a general framework based on the hybridization of rough and fuzzy sets, along with a new operator called RF-product, as an effective solution to some problems in image analysis. The second and third contributions are devoted to prove the effectiveness of the proposed framework, by presenting a compression method based on vector quantization and its compression capabilities and an HSV color image segmentation technique

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Fuzzy systems and unsupervised computing: exploration of applications in biology

    Get PDF
    In this thesis we will explore the use of fuzzy systems theory for applications in bioinformatics. The theory of fuzzy systems is concerned with formulating decision problems in data sets that are ill-defined. It supports the transfer from a subjective human classification to a numerical scale. In this manner it affords the testing of hypothesis and separation of the classes in the data. We first formulate problems in terms of a fuzzy system and then develop and test algorithms in terms of their performance with data from the domain of the life-sciences. From the results and the performance, we will learn about the usefulness of fuzzy systems for the field, as well as the applicability to the kind of problems and practicality for the computation itself. Computer Systems, Imagery and Medi

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference
    • …
    corecore