51 research outputs found

    Mouse model phenotypes provide information about human drug targets

    Get PDF
    Motivation: Methods for computational drug target identification use information from diverse information sources to predict or prioritize drug targets for known drugs. One set of resources that has been relatively neglected for drug repurposing is animal model phenotype. Results: We investigate the use of mouse model phenotypes for drug target identification. To achieve this goal, we first integrate mouse model phenotypes and drug effects, and then systematically compare the phenotypic similarity between mouse models and drug effect profiles. We find a high similarity between phenotypes resulting from loss-of-function mutations and drug effects resulting from the inhibition of a protein through a drug action, and demonstrate how this approach can be used to suggest candidate drug targets. Availability and implementation: Analysis code and supplementary data files are available on the project Web site at https://drugeffects.googlecode.com. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Novel therapeutics for complex diseases from genome-wide association data

    Full text link
    The development of novel therapies is essential to lower the burden of complex diseases. The purpose of this study is to identify novel therapeutics for complex diseases using bioinformatic methods. Bioinformatic tools such as candidate gene prediction tools allow identification of disease genes by identifying the potential candidate genes linked to genetic markers of the disease. Candidate gene prediction tools can only identify candidates for further research, and do not identify disease genes directly. Integration of drug-target datasets with candidate gene data-sets can identify novel potential therapeutics suitable for repositioning in clinical trials. Drug repositioning can save valuable time and money spent in therapeutic development of complex diseases

    DEVELOPING A WORKFLOW TO EVALUATE MEDICATIONS FOR REPURPOSING USING HEALTH CLAIMS DATA: APPLICATION TO SUBSTANCE USE DISORDERS

    Get PDF
    Healthcare big data are a growing source of real-world data with which to identify and validate medications with repurposing potential. Previously, we developed a claims-based workflow to evaluate medications with potential to treat stimulant use disorders. In order to test the workflow, the framework was applied in the context of opioid use disorders (OUDs), for which there are medications with known efficacy. Using the Truven Marketscan Commercial Claims Database, a nested case-control analysis was conducted to determine the association between OUD medications (buprenorphine, naltrexone) and remission. Cases were defined as enrollees with a remission diagnosis and matched (1:4) to controls (individuals without remission) using incidence density sampling, with age group, sex, region, and index year as additional matching variables. After adjusting for behavioral health visits, polysubstance use disorders, and psychiatric disorders using conditional logistic regression, the odds of OUD medication exposure were 3.8 (99% confidence interval: 3.0 – 4.9) times higher in cases than controls. Evaluation of angiotensin converting enzyme inhibitors (e.g. lisinopril) as a negative control revealed no significant association between the medication and remission. This work demonstrates the feasibility of using administrative health claims data to evaluate the effectiveness of medications to treat substance use disorders

    Drug Repurposing for the Treatment of COVID-19: A Knowledge Graph Approach

    Get PDF
    Identifying effective drug treatments for COVID-19 is essential to reduce morbidity and mortality. Although a number of existing drugs have been proposed as potential COVID-19 treatments, effective data platforms and algorithms to prioritize drug candidates for evaluation and application of knowledge graph for drug repurposing have not been adequately explored. A COVID-19 knowledge graph by integrating 14 public bioinformatic databases containing information on drugs, genes, proteins, viruses, diseases, symptoms and their linkages is developed. An algorithm is developed to extract hidden linkages connecting drugs and COVID-19 from the knowledge graph, to generate and rank proposed drug candidates for repurposing as treatments for COVID-19 by integrating three scores for each drug: motif scores, knowledge graph PageRank scores, and knowledge graph embedding scores. The knowledge graph contains over 48 000 nodes and 13 37 000 edges, including 13 563 molecules in the DrugBank database. From the 5624 molecules identified by the motif-discovery algorithms, ranking results show that 112 drug molecules had the top 2% scores, of which 50 existing drugs with other indications approved by health administrations reported. The proposed drug candidates serve to generate hypotheses for future evaluation in clinical trials and observational studies

    Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning

    Get PDF
    Simple Summary Drug repurposing is an accelerated route for drug development and a promising approach for finding medications for orphan and common diseases. Here, we compiled databases that comprise both computationally- or experimentally-derived data, and categorized them based on quiddity and origin of data, further focusing on those that present high throughput omic data or drug screens. These databases were then contextualized with genome-wide screening methods such as CRISPR/Cas9 and RNA interference, as well as state of art systems biology approaches that enable systematic characterizations of multi-omic data to find new indications for approved drugs or those that reached the latest phases of clinical trials. Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    Translating insights from neuropsychiatric genetics and genomics for precision psychiatry

    Get PDF
    The primary aim of precision medicine is to tailor healthcare more closely to the needs of individual patients. This requires progress in two areas: the development of more precise treatments and the ability to identify patients or groups of patients in the clinic for whom such treatments are likely to be the most effective. There is widespread optimism that advances in genomics will facilitate both of these endeavors. It can be argued that of all medical specialties psychiatry has most to gain in these respects, given its current reliance on syndromic diagnoses, the minimal foundation of existing mechanistic knowledge, and the substantial heritability of psychiatric phenotypes. Here, we review recent advances in psychiatric genomics and assess the likely impact of these findings on attempts to develop precision psychiatry. Emerging findings indicate a high degree of polygenicity and that genetic risk maps poorly onto the diagnostic categories used in the clinic. The highly polygenic and pleiotropic nature of psychiatric genetics will impact attempts to use genomic data for prediction and risk stratification, and also poses substantial challenges for conventional approaches to gaining biological insights from genetic findings. While there are many challenges to overcome, genomics is building an empirical platform upon which psychiatry can now progress towards better understanding of disease mechanisms, better treatments, and better ways of targeting treatments to the patients most likely to benefit, thus paving the way for precision psychiatry

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table
    • …
    corecore