1,221 research outputs found

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc

    KnowNER: Incremental Multilingual Knowledge in Named Entity Recognition

    Full text link
    KnowNER is a multilingual Named Entity Recognition (NER) system that leverages different degrees of external knowledge. A novel modular framework divides the knowledge into four categories according to the depth of knowledge they convey. Each category consists of a set of features automatically generated from different information sources (such as a knowledge-base, a list of names or document-specific semantic annotations) and is used to train a conditional random field (CRF). Since those information sources are usually multilingual, KnowNER can be easily trained for a wide range of languages. In this paper, we show that the incorporation of deeper knowledge systematically boosts accuracy and compare KnowNER with state-of-the-art NER approaches across three languages (i.e., English, German and Spanish) performing amongst state-of-the art systems in all of them

    Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection

    Full text link
    The state-of-the-art named entity recognition (NER) systems are supervised machine learning models that require large amounts of manually annotated data to achieve high accuracy. However, annotating NER data by human is expensive and time-consuming, and can be quite difficult for a new language. In this paper, we present two weakly supervised approaches for cross-lingual NER with no human annotation in a target language. The first approach is to create automatically labeled NER data for a target language via annotation projection on comparable corpora, where we develop a heuristic scheme that effectively selects good-quality projection-labeled data from noisy data. The second approach is to project distributed representations of words (word embeddings) from a target language to a source language, so that the source-language NER system can be applied to the target language without re-training. We also design two co-decoding schemes that effectively combine the outputs of the two projection-based approaches. We evaluate the performance of the proposed approaches on both in-house and open NER data for several target languages. The results show that the combined systems outperform three other weakly supervised approaches on the CoNLL data.Comment: 11 pages, The 55th Annual Meeting of the Association for Computational Linguistics (ACL), 201
    • …
    corecore