9,180 research outputs found

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Towards a debugging tutor for object-oriented environments

    Get PDF
    Programming has provided a rich domain for Artificial Intelligence in Education and many systems have been developed to advise students about the bugs in their programs, either during program development or post-hoc. Surprisingly few systems have been developed specifically to teach debugging. Learning environment builders have assumed that either the student will be taught these elsewhere or thatthey will be learnt piecemeal without explicit advice.This paper reports on two experiments on Java debugging strategy by novice programmers and discusses their implications for the design of a debugging tutor for Java that pays particular attention to how students use the variety of program representations available. The experimental results are in agreement with research in the area that suggests that good debugging performance is associated with a balanced use ofthe available representations and a sophisticated use of the debugging step facility which enables programmers to detect and obtain information from critical momentsin the execution of the program. A balanced use of the available representations seemsto be fostered by providing representations with a higher degree of dynamic linkingas well as by explicit instruction about the representation formalism employed in the program visualisations

    Visualization designs for constraint logic programming

    Get PDF
    We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed
    corecore