1,440 research outputs found

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base

    Information modelling for the development of sustainable construction (MINDOC)

    Get PDF
    In previous decades, controlling the environmental impact through lifecycle analysis has become a topical issue in the building sector. However, there are some problems when trying to exchange information between experts for conducting various studies like the environmental assessment of the building. There is also heterogeneity between construction product databases because they do not have the same characteristics and do not use the same basis to measure the environmental impact of each construction product. Moreover, there are still difficulties to exploit the full potential of linking BIM, SemanticWeb and databases of construction products because the idea of combining them is relatively recent. The goal of this thesis is to increase the flexibility needed to assess the building’s environmental impact in a timely manner. First, our research determines gaps in interoperability in the AEC (Architecture Engineering and Construction) domain. Then, we fill some of the shortcomings encountered in the formalization of building information and the generation of building data in Semantic Web formats. We further promote efficient use of BIM throughout the building life cycle by integrating and referencing environmental data on construction products into a BIM tool. Moreover, semantics has been improved by the enhancement of a well-known building-based ontology (namely ifcOWL for Industry Foundation Classes Web Ontology Language). Finally, we experience a case study of a small building for our methodology

    Interoperability of Traffic Infrastructure Planning and Geospatial Information Systems

    Get PDF
    Building Information Modelling (BIM) as a Model-based design facilitates to investigate multiple solutions in the infrastructure planning process. The most important reason for implementing model-based design is to help designers and to increase communication between different design parties. It decentralizes and coordinates team collaboration and facilitates faster and lossless project data exchange and management across extended teams and external partners in project lifecycle. Infrastructure are fundamental facilities, services, and installations needed for the functioning of a community or society, such as transportation, roads, communication systems, water and power networks, as well as power plants. Geospatial Information Systems (GIS) as the digital representation of the world are systems for maintaining, managing, modelling, analyzing, and visualizing of the world data including infrastructure. High level infrastructure suits mostly facilitate to analyze the infrastructure design based on the international or user defined standards. Called regulation1-based design, this minimizes errors, reduces costly design conflicts, increases time savings and provides consistent project quality, yet mostly in standalone solutions. Tasks of infrastructure usually require both model based and regulation based design packages. Infrastructure tasks deal with cross-domain information. However, the corresponding data is split in several domain models. Besides infrastructure projects demand a lot of decision makings on governmental as well as on private level considering different data models. Therefore lossless flow of project data as well as documents like regulations across project team, stakeholders, governmental and private level is highly important. Yet infrastructure projects have largely been absent from product modelling discourses for a long time. Thus, as will be explained in chapter 2 interoperability is needed in infrastructure processes. Multimodel (MM) is one of the interoperability methods which enable heterogeneous data models from various domains get bundled together into a container keeping their original format. Existing interoperability methods including existing MM solutions can’t satisfactorily fulfill the typical demands of infrastructure information processes like dynamic data resources and a huge amount of inter model relations. Therefore chapter 3 concept of infrastructure information modelling investigates a method for loose and rule based coupling of exchangeable heterogeneous information spaces. This hypothesis is an extension for the existing MM to a rule-based Multimodel named extended Multimodel (eMM) with semantic rules – instead of static links. The semantic rules will be used to describe relations between data elements of various models dynamically in a link-database. Most of the confusion about geospatial data models arises from their diversity. In some of these data models spatial IDs are the basic identities of entities and in some other data models there are no IDs. That is why in the geospatial data, data structure is more important than data models. There are always spatial indexes that enable accessing to the geodata. The most important unification of data models involved in infrastructure projects is the spatiality. Explained in chapter 4 the method of infrastructure information modelling for interoperation in spatial domains generate interlinks through spatial identity of entities. Match finding through spatial links enables any kind of data models sharing spatial property get interlinked. Through such spatial links each entity receives the spatial information from other data models which is related to the target entity due to sharing equivalent spatial index. This information will be the virtual properties for the object. The thesis uses Nearest Neighborhood algorithm for spatial match finding and performs filtering and refining approaches. For the abstraction of the spatial matching results hierarchical filtering techniques are used for refining the virtual properties. These approaches focus on two main application areas which are product model and Level of Detail (LoD). For the eMM suggested in this thesis a rule based interoperability method between arbitrary data models of spatial domain has been developed. The implementation of this method enables transaction of data in spatial domains run loss less. The system architecture and the implementation which has been applied on the case study of this thesis namely infrastructure and geospatial data models are described in chapter 5. Achieving afore mentioned aims results in reducing the whole project lifecycle costs, increasing reliability of the comprehensive fundamental information, and consequently in independent, cost-effective, aesthetically pleasing, and environmentally sensitive infrastructure design.:ABSTRACT 4 KEYWORDS 7 TABLE OF CONTENT 8 LIST OF FIGURES 9 LIST OF TABLES 11 LIST OF ABBREVIATION 12 INTRODUCTION 13 1.1. A GENERAL VIEW 14 1.2. PROBLEM STATEMENT 15 1.3. OBJECTIVES 17 1.4. APPROACH 18 1.5. STRUCTURE OF THESIS 18 INTEROPERABILITY IN INFRASTRUCTURE ENGINEERING 20 2.1. STATE OF INTEROPERABILITY 21 2.1.1. Interoperability of GIS and BIM 23 2.1.2. Interoperability of GIS and Infrastructure 25 2.2. MAIN CHALLENGES AND RELATED WORK 27 2.3. INFRASTRUCTURE MODELING IN GEOSPATIAL CONTEXT 29 2.3.1. LamdXML: Infrastructure Data Standards 32 2.3.2. CityGML: Geospatial Data Standards 33 2.3.3. LandXML and CityGML 36 2.4. INTEROPERABILITY AND MULTIMODEL TECHNOLOGY 39 2.5. LIMITATIONS OF EXISTING APPROACHES 41 INFRASTRUCTURE INFORMATION MODELLING 44 3.1. MULTI MODEL FOR GEOSPATIAL AND INFRASTRUCTURE DATA MODELS 45 3.2. LINKING APPROACH, QUERYING AND FILTERING 48 3.2.1. Virtual Properties via Link Model 49 3.3. MULTI MODEL AS AN INTERDISCIPLINARY METHOD 52 3.4. USING LEVEL OF DETAIL (LOD) FOR FILTERING 53 SPATIAL MODELLING AND PROCESSING 58 4.1. SPATIAL IDENTIFIERS 59 4.1.1. Spatial Indexes 60 4.1.2. Tree-Based Spatial Indexes 61 4.2. NEAREST NEIGHBORHOOD AS A BASIC LINK METHOD 63 4.3. HIERARCHICAL FILTERING 70 4.4. OTHER FUNCTIONAL LINK METHODS 75 4.5. ADVANCES AND LIMITATIONS OF FUNCTIONAL LINK METHODS 76 IMPLEMENTATION OF THE PROPOSED IIM METHOD 77 5.1. IMPLEMENTATION 78 5.2. CASE STUDY 83 CONCLUSION 89 6.1. SUMMERY 90 6.2. DISCUSSION OF RESULTS 92 6.3. FUTURE WORK 93 BIBLIOGRAPHY 94 7.1. BOOKS AND PAPERS 95 7.2. WEBSITES 10

    Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm

    Get PDF
    [EN] Sustainability and interoperability are two closely related concepts. By analyzing the three fundamental facets of sustainability-economic, ecological and ethical/social-it is easier to address their connection with the concept of interoperability. This paper focuses on the economic aspect, in the field of civil engineering. In this area, due to the local nature of many of the software tools used, interoperability problems are frequent, with few studies addressing the economic impact of this, especially in small engineering firms. The main contribution of this paper is a design methodology for linear works based on the federation of building information modelling (BIM) models created with different software tools, conceived to break the interoperability issues between these applications. As an example, this methodology is applied to a mountain road widening project. A detailed economic analysis of the application of this methodology by an engineering Spanish firm reveals the important cost reductions that the integration of the software tools provides versus the prior practices.The authors wish to acknowledge support from ISTRAM, CivileStudio and the engineering firm for the information provided.Aranda Domingo, JÁ.; Martin-Dorta, N.; Naya Sanchis, F.; Conesa-Pastor, J.; Contero, M. (2020). Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm. Sustainability. 12(22):1-16. https://doi.org/10.3390/su12229581S1161222Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5), 522-530. doi:10.1016/j.autcon.2009.11.003Bynum, P., Issa, R. R. A., & Olbina, S. (2013). Building Information Modeling in Support of Sustainable Design and Construction. Journal of Construction Engineering and Management, 139(1), 24-34. doi:10.1061/(asce)co.1943-7862.0000560BuildingSMART Internationalhttps://www.buildingsmart.org/Modelos digitales del terreno: Introducción y aplicaciones a las ciencias ambientales. Oviedo Univ. Oviedo 1994, 118http://www.etsimo.uniovi.es/~feliBaltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 83-94. doi:10.1016/s0924-2716(99)00014-3Hirpa, D., Hare, W., Lucet, Y., Pushak, Y., & Tesfamariam, S. (2016). A bi-objective optimization framework for three-dimensional road alignment design. Transportation Research Part C: Emerging Technologies, 65, 61-78. doi:10.1016/j.trc.2016.01.016Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023Nehate, G., & Rys, M. (2006). 3D Calculation of Stopping-Sight Distance from GPS Data. Journal of Transportation Engineering, 132(9), 691-698. doi:10.1061/(asce)0733-947x(2006)132:9(691)Borga, M., Tonelli, F., & Selleroni, J. (2004). A physically based model of the effects of forest roads on slope stability. Water Resources Research, 40(12). doi:10.1029/2004wr003238Vanmarcke, E. H. (1977). Reliability of Earth Slopes. Journal of the Geotechnical Engineering Division, 103(11), 1247-1265. doi:10.1061/ajgeb6.0000518Istram Softwarehttps://www.istram.netCivileStudio Softwarehttps://www.civilestudio.comBates, P. ., & De Roo, A. P. . (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2), 54-77. doi:10.1016/s0022-1694(00)00278-xBryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971-980. doi:10.1016/j.ijproman.2012.12.001Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. doi:10.1016/j.rser.2016.11.083Love, P. E. D., & Matthews, J. (2019). The ‘how’ of benefits management for digital technology: From engineering to asset management. Automation in Construction, 107, 102930. doi:10.1016/j.autcon.2019.102930Shin, M., Lee, H., & Kim, H. (2018). Benefit–Cost Analysis of Building Information Modeling (BIM) in a Railway Site. Sustainability, 10(11), 4303. doi:10.3390/su10114303Barlish, K., & Sullivan, K. (2012). How to measure the benefits of BIM — A case study approach. Automation in Construction, 24, 149-159. doi:10.1016/j.autcon.2012.02.008Ham, N., Moon, S., Kim, J.-H., & Kim, J.-J. (2018). Economic Analysis of Design Errors in BIM-Based High-Rise Construction Projects: Case Study of Haeundae L Project. Journal of Construction Engineering and Management, 144(6), 05018006. doi:10.1061/(asce)co.1943-7862.0001498Hong, Y., Hammad, A. W. A., Akbarnezhad, A., & Arashpour, M. (2020). A neural network approach to predicting the net costs associated with BIM adoption. Automation in Construction, 119, 103306. doi:10.1016/j.autcon.2020.10330

    Innovative Tools and Methods Using BIM for an Efficient Renovation in Buildings

    Get PDF
    This open access book describes a BIM-based toolkit that has been developed according to the latest research activities on building information modelling and semantic interoperability to optimize the building process. It highlights the impacts of using such new tools to fast renovation activities starting from the decision-making and design stages to the construction site management with the possibility to monitor occupants' and owners’ feedback during the realization process. In this process, a framework has been developed and implemented to allow stakeholders involved in a renovation project to efficiently compile, maintain, and add data about (i) building elements, (ii) building services systems, (iii) tenants, operators, and owners of the building, and (iv) current and predicted performance of the building from the various data sources available. The framework applies and specializes the existing practices in the Semantic Web, Linked Data, and ontology domain to the management of renovation projects. It has been designed to be open so that any system which implements the required functions and uses the specified conventions will be able to achieve semantic interoperability with other framework-compliant systems in the renovation domain. Finally, this book represents the validation process of the toolkit that has been held in three demo sites: a social housing building in Italy and two private residential buildings in Poland and Finland. The outcome shows that the toolkit facilitates the renovation process with relevant reductions of time, costs, and energy consumption and that the inhabitants can take advantage of the increase in building performances, quality, and comfort

    The evolution of ontology in AEC: A two-decade synthesis, application domains, and future directions

    Get PDF
    Ontologies play a pivotal role in knowledge representation, particularly beneficial for the Architecture, Engineering, and Construction (AEC) sector due to its inherent data diversity and intricacy. Despite the growing interest in ontology and data integration research, especially with the advent of knowledge graphs and digital twins, a noticeable lack of consolidated academic synthesis still needs to be addressed. This review paper aims to bridge that gap, meticulously analysing 142 journal articles from 2000 to 2021 on the application of ontologies in the AEC sector. The research is segmented through systematic evaluation into ten application domains within the construction realm- process, cost, operation/maintenance, health/safety, sustainability, monitoring/control, intelligent cities, heritage building information modelling (HBIM), compliance, and miscellaneous. This categorisation aids in pinpointing ontologies suitable for various research objectives. Furthermore, the paper highlights prevalent limitations within current ontology studies in the AEC sector. It offers strategic recommendations, presenting a well-defined path for future research to address these gaps

    Towards a semantic Construction Digital Twin: directions for future research

    Get PDF
    As the Architecture, Engineering and Construction sector is embracing the digital age, the processes involved in the design, construction and operation of built assets are more and more influenced by technologies dealing with value-added monitoring of data from sensor networks, management of this data in secure and resilient storage systems underpinned by semantic models, as well as the simulation and optimisation of engineering systems. Aside from enhancing the efficiency of the value chain, such information-intensive models and associated technologies play a decisive role in minimising the lifecycle impacts of our buildings. While Building Information Modelling provides procedures, technologies and data schemas enabling a standardised semantic representation of building components and systems, the concept of a Digital Twin conveys a more holistic socio-technical and process-oriented characterisation of the complex artefacts involved by leveraging the synchronicity of the cyber-physical bi-directional data flows. Moreover, BIM lacks semantic completeness in areas such as control systems, including sensor networks, social systems, and urban artefacts beyond the scope of buildings, thus requiring a holistic, scalable semantic approach that factors in dynamic data at different levels. The paper reviews the multi-faceted applications of BIM during the construction stage and highlights limits and requirements, paving the way to the concept of a Construction Digital Twin. A definition of such a concept is then given, described in terms of underpinning research themes, while elaborating on areas for future research

    BIM implementation for infrastructure projects: Methods and tools for information modeling and management

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore