867 research outputs found

    Sample Path Analysis of Integrate-and-Fire Neurons

    Get PDF
    Computational neuroscience is concerned with answering two intertwined questions that are based on the assumption that spatio-temporal patterns of spikes form the universal language of the nervous system. First, what function does a specific neural circuitry perform in the elaboration of a behavior? Second, how do neural circuits process behaviorally-relevant information? Non-linear system analysis has proven instrumental in understanding the coding strategies of early neural processing in various sensory modalities. Yet, at higher levels of integration, it fails to help in deciphering the response of assemblies of neurons to complex naturalistic stimuli. If neural activity can be assumed to be primarily driven by the stimulus at early stages of processing, the intrinsic activity of neural circuits interacts with their high-dimensional input to transform it in a stochastic non-linear fashion at the cortical level. As a consequence, any attempt to fully understand the brain through a system analysis approach becomes illusory. However, it is increasingly advocated that neural noise plays a constructive role in neural processing, facilitating information transmission. This prompts to gain insight into the neural code by studying the stochasticity of neuronal activity, which is viewed as biologically relevant. Such an endeavor requires the design of guiding theoretical principles to assess the potential benefits of neural noise. In this context, meeting the requirements of biological relevance and computational tractability, while providing a stochastic description of neural activity, prescribes the adoption of the integrate-and-fire model. In this thesis, founding ourselves on the path-wise description of neuronal activity, we propose to further the stochastic analysis of the integrate-and fire model through a combination of numerical and theoretical techniques. To begin, we expand upon the path-wise construction of linear diffusions, which offers a natural setting to describe leaky integrate-and-fire neurons, as inhomogeneous Markov chains. Based on the theoretical analysis of the first-passage problem, we then explore the interplay between the internal neuronal noise and the statistics of injected perturbations at the single unit level, and examine its implications on the neural coding. At the population level, we also develop an exact event-driven implementation of a Markov network of perfect integrate-and-fire neurons with both time delayed instantaneous interactions and arbitrary topology. We hope our approach will provide new paradigms to understand how sensory inputs perturb neural intrinsic activity and accomplish the goal of developing a new technique for identifying relevant patterns of population activity. From a perturbative perspective, our study shows how injecting frozen noise in different flavors can help characterize internal neuronal noise, which is presumably functionally relevant to information processing. From a simulation perspective, our event-driven framework is amenable to scrutinize the stochastic behavior of simple recurrent motifs as well as temporal dynamics of large scale networks under spike-timing-dependent plasticity

    A Markovian event-based framework for stochastic spiking neural networks

    Full text link
    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks

    Event-driven simulation of spiking neurons with stochastic dynamics

    Get PDF
    We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics

    Modeling the coupling of action potential and electrodes

    Get PDF
    The present monograph is a study of pulse propagation in nerves. The main project of this work is modeling and simulation of the action potential propagation in a neuron and its interaction with the electrodes in the context of neurochip application. In the first part, I work with an adapted model of FitzHugh-Nagumo derived from the Hodgkin-Huxley model. The second part was the result of turning the spotlight-on onto the drawbacks of Hodgkin-Huxley model and to bring forth, an alternative model: soliton model. The purpose is to comprehend the role of membrane state in the pulse propagation

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs

    Get PDF
    The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite-soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neuron

    Neurovascular coupling: a parallel implementation

    Get PDF
    A numerical model of neurovascular coupling (NVC) is presented based on neuronal activity coupled to vasodilation/contraction models via the astrocytic mediated perivascular K + and the smooth muscle cell (SMC) Ca2+ pathway termed a neurovascular unit (NVU). Luminal agonists acting on P2Y receptors on the endothelial cell (EC) surface provide a flux of inositol trisphosphate (IP3) into the endothelial cytosol. This concentration of IP3 is transported via gap junctions between EC and SMC providing a source of sacroplasmic derived Ca2+ in the SMC. The model is able to relate a neuronal input signal to the corresponding vessel reaction (contraction or dilation). A tissue slice consisting of blocks, each of which contain an NVU is connected to a space filling H-tree, simulating a perfusing arterial tree (vasculature) The model couples the NVUs to the vascular tree via a stretch mediated Ca2+ channel on both the EC and SMC. The SMC is induced to oscillate by increasing an agonist flux in the EC and hence increased IP3 induced Ca2+ from the SMC stores with the resulting calcium-induced calcium release (CICR) oscillation inhibiting NVC thereby relating blood flow to vessel contraction and dilation following neuronal activation. The coupling between the vasculature and the set of NVUs is relatively weak for the case with agonist induced where only the Ca2+ in cells inside the activated area becomes oscillatory however, the radii of vessels both inside and outside the activated area oscillate (albeit small for those outside). In addition the oscillation profile differs between coupled and decoupled states with the time required to refill the cytosol with decreasing Ca2+ and increasing frequency with coupling. The solution algorithm is shown to have excellent weak and strong scaling. Results have been generated for tissue slices containing up to 4096 blocks
    corecore