1,237 research outputs found

    Tourette syndrome research highlights 2015 [version 1; referees: 3 approved]

    Get PDF
    We present selected highlights from research that appeared during 2015 on Tourette syndrome and other tic disorders. Topics include phenomenology, comorbidities, developmental course, genetics, animal models, neuroimaging, electrophysiology, pharmacology, and treatment. We briefly summarize articles whose results we believe may lead to new treatments, additional research or modifications in current models of TS

    Pinching sweaters on your phone – iShoogle : multi-gesture touchscreen fabric simulator using natural on-fabric gestures to communicate textile qualities

    Get PDF
    The inability to touch fabrics online frustrates consumers, who are used to evaluating physical textiles by engaging in complex, natural gestural interactions. When customers interact with physical fabrics, they combine cross-modal information about the fabric's look, sound and handle to build an impression of its physical qualities. But whenever an interaction with a fabric is limited (i.e. when watching clothes online) there is a perceptual gap between the fabric qualities perceived digitally and the actual fabric qualities that a person would perceive when interacting with the physical fabric. The goal of this thesis was to create a fabric simulator that minimized this perceptual gap, enabling accurate perception of the qualities of fabrics presented digitally. We designed iShoogle, a multi-gesture touch-screen sound-enabled fabric simulator that aimed to create an accurate representation of fabric qualities without the need for touching the physical fabric swatch. iShoogle uses on-screen gestures (inspired by natural on-fabric movements e.g. Crunching) to control pre-recorded videos and audio of fabrics being deformed (e.g. being Crunched). iShoogle creates an illusion of direct video manipulation and also direct manipulation of the displayed fabric. This thesis describes the results of nine studies leading towards the development and evaluation of iShoogle. In the first three studies, we combined expert and non-expert textile-descriptive words and grouped them into eight dimensions labelled with terms Crisp, Hard, Soft, Textured, Flexible, Furry, Rough and Smooth. These terms were used to rate fabric qualities throughout the thesis. We observed natural on-fabric gestures during a fabric handling study (Study 4) and used the results to design iShoogle's on-screen gestures. In Study 5 we examined iShoogle's performance and speed in a fabric handling task and in Study 6 we investigated users' preferences for sound playback interactivity. iShoogle's accuracy was then evaluated in the last three studies by comparing participants’ ratings of textile qualities when using iShoogle with ratings produced when handling physical swatches. We also described the recording and processing techniques for the video and audio content that iShoogle used. Finally, we described the iShoogle iPhone app that was released to the general public. Our evaluation studies showed that iShoogle significantly improved the accuracy of fabric perception in at least some cases. Further research could investigate which fabric qualities and which fabrics are particularly suited to be represented with iShoogle

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Designing multimodal interaction for the visually impaired

    Get PDF
    Although multimodal computer input is believed to have advantages over unimodal input, little has been done to understand how to design a multimodal input mechanism to facilitate visually impaired users\u27 information access. This research investigates sighted and visually impaired users\u27 multimodal interaction choices when given an interaction grammar that supports speech and touch input modalities. It investigates whether task type, working memory load, or prevalence of errors in a given modality impact a user\u27s choice. Theories in human memory and attention are used to explain the users\u27 speech and touch input coordination. Among the abundant findings from this research, the following are the most important in guiding system design: (1) Multimodal input is likely to be used when it is available. (2) Users select input modalities based on the type of task undertaken. Users prefer touch input for navigation operations, but speech input for non-navigation operations. (3) When errors occur, users prefer to stay in the failing modality, instead of switching to another modality for error correction. (4) Despite the common multimodal usage patterns, there is still a high degree of individual differences in modality choices. Additional findings include: (I) Modality switching becomes more prevalent when lower working memory and attentional resources are required for the performance of other concurrent tasks. (2) Higher error rates increases modality switching but only under duress. (3) Training order affects modality usage. Teaching a modality first versus second increases the use of this modality in users\u27 task performance. In addition to discovering multimodal interaction patterns above, this research contributes to the field of human computer interaction design by: (1) presenting a design of an eyes-free multimodal information browser, (2) presenting a Wizard of Oz method for working with visually impaired users in order to observe their multimodal interaction. The overall contribution of this work is that of one of the early investigations into how speech and touch might be combined into a non-visual multimodal system that can effectively be used for eyes-free tasks

    Advances in Human Factors in Wearable Technologies and Game Design

    Get PDF

    Touching on elements for a non-invasive sensory feedback system for use in a prosthetic hand

    Get PDF
    Hand amputation results in the loss of motor and sensory functions, impacting activities of daily life and quality of life. Commercially available prosthetic hands restore the motor function but lack sensory feedback, which is crucial to receive information about the prosthesis state in real-time when interacting with the external environment. As a supplement to the missing sensory feedback, the amputee needs to rely on visual and audio cues to operate the prosthetic hand, which can be mentally demanding. This thesis revolves around finding potential solutions to contribute to an intuitive non-invasive sensory feedback system that could be cognitively less burdensome and enhance the sense of embodiment (the feeling that an artificial limb belongs to one’s own body), increasing acceptance of wearing a prosthesis.A sensory feedback system contains sensors to detect signals applied to the prosthetics. The signals are encoded via signal processing to resemble the detected sensation delivered by actuators on the skin. There is a challenge in implementing commercial sensors in a prosthetic finger. Due to the prosthetic finger’s curvature and the fact that some prosthetic hands use a covering rubber glove, the sensor response would be inaccurate. This thesis shows that a pneumatic touch sensor integrated into a rubber glove eliminates these errors. This sensor provides a consistent reading independent of the incident angle of stimulus, has a sensitivity of 0.82 kPa/N, a hysteresis error of 2.39±0.17%, and a linearity error of 2.95±0.40%.For intuitive tactile stimulation, it has been suggested that the feedback stimulus should be modality-matched with the intention to provide a sensation that can be easily associated with the real touch on the prosthetic hand, e.g., pressure on the prosthetic finger should provide pressure on the residual limb. A stimulus should also be spatially matched (e.g., position, size, and shape). Electrotactile stimulation has the ability to provide various sensations due to it having several adjustable parameters. Therefore, this type of stimulus is a good candidate for discrimination of textures. A microphone can detect texture-elicited vibrations to be processed, and by varying, e.g., the median frequency of the electrical stimulation, the signal can be presented on the skin. Participants in a study using electrotactile feedback showed a median accuracy of 85% in differentiating between four textures.During active exploration, electrotactile and vibrotactile feedback provide spatially matched modality stimulations, providing continuous feedback and providing a displaced sensation or a sensation dispatched on a larger area. Evaluating commonly used stimulation modalities using the Rubber Hand Illusion, modalities which resemble the intended sensation provide a more vivid illusion of ownership for the rubber hand.For a potentially more intuitive sensory feedback, the stimulation can be somatotopically matched, where the stimulus is experienced as being applied on a site corresponding to their missing hand. This is possible for amputees who experience referred sensation on their residual stump. However, not all amputees experience referred sensations. Nonetheless, after a structured training period, it is possible to learn to associate touch with specific fingers, and the effect persisted after two weeks. This effect was evaluated on participants with intact limbs, so it remains to evaluate this effect for amputees.In conclusion, this thesis proposes suggestions on sensory feedback systems that could be helpful in future prosthetic hands to (1) reduce their complexity and (2) enhance the sense of body ownership to enhance the overall sense of embodiment as an addition to an intuitive control system
    corecore