6,083 research outputs found

    Link-State Routing With Hop-by-Hop Forwarding Can Achieve Optimal Traffic Engineering

    Full text link

    Traffic Engineering with Segment Routing: SDN-based Architectural Design and Open Source Implementation

    Full text link
    Traffic Engineering (TE) in IP carrier networks is one of the functions that can benefit from the Software Defined Networking paradigm. By logically centralizing the control of the network, it is possible to "program" per-flow routing based on TE goals. Traditional per-flow routing requires a direct interaction between the SDN controller and each node that is involved in the traffic paths. Depending on the granularity and on the temporal properties of the flows, this can lead to scalability issues for the amount of routing state that needs to be maintained in core network nodes and for the required configuration traffic. On the other hand, Segment Routing (SR) is an emerging approach to routing that may simplify the route enforcement delegating all the configuration and per-flow state at the border of the network. In this work we propose an architecture that integrates the SDN paradigm with SR-based TE, for which we have provided an open source reference implementation. We have designed and implemented a simple TE/SR heuristic for flow allocation and we show and discuss experimental results.Comment: Extended version of poster paper accepted for EWSDN 2015 (version v4 - December 2015

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
    • …
    corecore