1,200 research outputs found

    Event-Driven Network Programming

    Full text link
    Software-defined networking (SDN) programs must simultaneously describe static forwarding behavior and dynamic updates in response to events. Event-driven updates are critical to get right, but difficult to implement correctly due to the high degree of concurrency in networks. Existing SDN platforms offer weak guarantees that can break application invariants, leading to problems such as dropped packets, degraded performance, security violations, etc. This paper introduces EVENT-DRIVEN CONSISTENT UPDATES that are guaranteed to preserve well-defined behaviors when transitioning between configurations in response to events. We propose NETWORK EVENT STRUCTURES (NESs) to model constraints on updates, such as which events can be enabled simultaneously and causal dependencies between events. We define an extension of the NetKAT language with mutable state, give semantics to stateful programs using NESs, and discuss provably-correct strategies for implementing NESs in SDNs. Finally, we evaluate our approach empirically, demonstrating that it gives well-defined consistency guarantees while avoiding expensive synchronization and packet buffering

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size

    SDN management layer: design requirements and future direction

    Full text link
    Computer networks are becoming more and more complex and difficult to manage. The research community has been expending a lot of efforts to come up with a general management paradigm that is able to hide the details of the physical infrastructure and enable flexible network management. Software Defined Networking (SDN) is such a paradigm that simplifies network management and enables network innovations. In this survey paper, by reviewing existing SDN management layers (platforms), we identify the general common management architecture for SDN networks, and further identify the design requirements of the management layer that is at the core of the architecture. We also point out open issues and weaknesses of existing SDN management layers. We conclude with a promising future direction for improving the SDN management layer.This work is supported in part by the National Science Foundation (NSF grant CNS-0963974)

    DHRL-FNMR: An Intelligent Multicast Routing Approach Based on Deep Hierarchical Reinforcement Learning in SDN

    Full text link
    The optimal multicast tree problem in the Software-Defined Networking (SDN) multicast routing is an NP-hard combinatorial optimization problem. Although existing SDN intelligent solution methods, which are based on deep reinforcement learning, can dynamically adapt to complex network link state changes, these methods are plagued by problems such as redundant branches, large action space, and slow agent convergence. In this paper, an SDN intelligent multicast routing algorithm based on deep hierarchical reinforcement learning is proposed to circumvent the aforementioned problems. First, the multicast tree construction problem is decomposed into two sub-problems: the fork node selection problem and the construction of the optimal path from the fork node to the destination node. Second, based on the information characteristics of SDN global network perception, the multicast tree state matrix, link bandwidth matrix, link delay matrix, link packet loss rate matrix, and sub-goal matrix are designed as the state space of intrinsic and meta controllers. Then, in order to mitigate the excessive action space, our approach constructs different action spaces at the upper and lower levels. The meta-controller generates an action space using network nodes to select the fork node, and the intrinsic controller uses the adjacent edges of the current node as its action space, thus implementing four different action selection strategies in the construction of the multicast tree. To facilitate the intelligent agent in constructing the optimal multicast tree with greater speed, we developed alternative reward strategies that distinguish between single-step node actions and multi-step actions towards multiple destination nodes

    Blockchain-Based Transaction Validation Protocol for a Secure Distributed IoT Network

    Get PDF
    Funding Agency: 10.13039/501100010418-Institute for Information and Communications Technology Promotion (IITP), Ministry of Science and ICT (MSIT); 10.13039/501100003621-Korea Government;Peer reviewedPublisher PD
    • …
    corecore