266,718 research outputs found

    Predicting Anchor Links between Heterogeneous Social Networks

    Full text link
    People usually get involved in multiple social networks to enjoy new services or to fulfill their needs. Many new social networks try to attract users of other existing networks to increase the number of their users. Once a user (called source user) of a social network (called source network) joins a new social network (called target network), a new inter-network link (called anchor link) is formed between the source and target networks. In this paper, we concentrated on predicting the formation of such anchor links between heterogeneous social networks. Unlike conventional link prediction problems in which the formation of a link between two existing users within a single network is predicted, in anchor link prediction, the target user is missing and will be added to the target network once the anchor link is created. To solve this problem, we use meta-paths as a powerful tool for utilizing heterogeneous information in both the source and target networks. To this end, we propose an effective general meta-path-based approach called Connector and Recursive Meta-Paths (CRMP). By using those two different categories of meta-paths, we model different aspects of social factors that may affect a source user to join the target network, resulting in the formation of a new anchor link. Extensive experiments on real-world heterogeneous social networks demonstrate the effectiveness of the proposed method against the recent methods.Comment: To be published in "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

    Probabilistic Approach to Structural Change Prediction in Evolving Social Networks

    Get PDF
    We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server

    Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach

    Full text link
    Virtual screening (VS) is widely used during computational drug discovery to reduce costs. Chemogenomics-based virtual screening (CGBVS) can be used to predict new compound-protein interactions (CPIs) from known CPI network data using several methods, including machine learning and data mining. Although CGBVS facilitates highly efficient and accurate CPI prediction, it has poor performance for prediction of new compounds for which CPIs are unknown. The pairwise kernel method (PKM) is a state-of-the-art CGBVS method and shows high accuracy for prediction of new compounds. In this study, on the basis of link mining, we improved the PKM by combining link indicator kernel (LIK) and chemical similarity and evaluated the accuracy of these methods. The proposed method obtained an average area under the precision-recall curve (AUPR) value of 0.562, which was higher than that achieved by the conventional Gaussian interaction profile (GIP) method (0.425), and the calculation time was only increased by a few percent

    BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder

    Full text link
    Network embedding aims at projecting the network data into a low-dimensional feature space, where the nodes are represented as a unique feature vector and network structure can be effectively preserved. In recent years, more and more online application service sites can be represented as massive and complex networks, which are extremely challenging for traditional machine learning algorithms to deal with. Effective embedding of the complex network data into low-dimension feature representation can both save data storage space and enable traditional machine learning algorithms applicable to handle the network data. Network embedding performance will degrade greatly if the networks are of a sparse structure, like the emerging networks with few connections. In this paper, we propose to learn the embedding representation for a target emerging network based on the broad learning setting, where the emerging network is aligned with other external mature networks at the same time. To solve the problem, a new embedding framework, namely "Deep alIgned autoencoder based eMbEdding" (DIME), is introduced in this paper. DIME handles the diverse link and attribute in a unified analytic based on broad learning, and introduces the multiple aligned attributed heterogeneous social network concept to model the network structure. A set of meta paths are introduced in the paper, which define various kinds of connections among users via the heterogeneous link and attribute information. The closeness among users in the networks are defined as the meta proximity scores, which will be fed into DIME to learn the embedding vectors of users in the emerging network. Extensive experiments have been done on real-world aligned social networks, which have demonstrated the effectiveness of DIME in learning the emerging network embedding vectors.Comment: 10 pages, 9 figures, 4 tables. Full paper is accepted by ICDM 2017, In: Proceedings of the 2017 IEEE International Conference on Data Mining
    • …
    corecore