373 research outputs found

    Dynamic Queue Utilization Based MAC for multi-hop Ad Hoc networks

    Get PDF
    The end-to-end throughput in single flow multi-hop Ad Hoc networks decays rapidly with path length. Along the path, the success rate of delivering packets towards the destination decreases due to higher contention, interference, limited buffer size and limited shared bandwidth constraints. In such environments the queues fill up faster in nodes closer to the source than in the nodes nearer the destination. In order to reduce buffer overflow and improve throughput for a saturated network, this paper introduces a new MAC protocol named Dynamic Queue Utilization Based Medium Access Control (DQUB-MAC). The protocol aims to prioritise access to the channel for queues with higher utilization and helps in achieving higher throughput by rapidly draining packets towards the destination. The proposed MAC enhances the performance of an end-to-end data flow by up to 30% for a six hop transmission in a chain topology and is demonstrated to remain competitive for other network topologies and for a variety of packet sizes

    A TCP Driven CAC scheme: efficient resource utilization in a leaky HAP-satellite integrated scenario

    Get PDF
    An integrated high altitude platform (HAP)-satellite communication system appears to be very suitable for a large set of scenarios including emergency situations, exceptional events, etc. In fact, the satellite capability to provide a broadband and ubiquitous access can be enhanced by the deployment of HAP that allows the use of low-power consuming, cost-efficient, and portable terminals. To obtain an optimum utilization of radio resource, without renouncing to QoS satisfaction, a suitable call admission control scheme must be implemented. Nevertheless, transmission control protocol (TCP) behavior, mainly affected by the high latency and shadowing events, can impact call admission control (CAC) performance. Therefore, it would be desirable that the CAC scheme takes into account also the TCP congestion window real evolution. We present an innovative CAC scheme that uses TCP statistics as one of its inputs and is able to manage different classes of users. Results show that CAC performance is significantly improved by introducing TCP statistics about network congestion as an input parameter

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-A ware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-Aware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-Aware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    Interference in wireless networks : a game theory approach

    Get PDF

    Enabling RAN Slicing Through Carrier Aggregation in mmWave Cellular Networks

    Full text link
    The ever increasing number of connected devices and of new and heterogeneous mobile use cases implies that 5G cellular systems will face demanding technical challenges. For example, Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) scenarios present orthogonal Quality of Service (QoS) requirements that 5G aims to satisfy with a unified Radio Access Network (RAN) design. Network slicing and mmWave communications have been identified as possible enablers for 5G. They provide, respectively, the necessary scalability and flexibility to adapt the network to each specific use case environment, and low latency and multi-gigabit-per-second wireless links, which tap into a vast, currently unused portion of the spectrum. The optimization and integration of these technologies is still an open research challenge, which requires innovations at different layers of the protocol stack. This paper proposes to combine them in a RAN slicing framework for mmWaves, based on carrier aggregation. Notably, we introduce MilliSlice, a cross-carrier scheduling policy that exploits the diversity of the carriers and maximizes their utilization, thus simultaneously guaranteeing high throughput for the eMBB slices and low latency and high reliability for the URLLC flows.Comment: 8 pages, 8 figures. Proc. of the 18th Mediterranean Communication and Computer Networking Conference (MedComNet 2020), Arona, Italy, 202

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements
    • …
    corecore