14,288 research outputs found

    Link Prediction with Personalized Social Influence

    Get PDF
    Link prediction in social networks is to infer the new links likely to be formed next or to reconstruct the links that are currently missing. Link prediction is of great interest recently since one of the most important goals of social networks is to connect people, so that they can interact with their friends from real world or make new friend through Internet. So the predicted links in social networks can be helpful for people to have connections with each others. Other than the pure topological network structures, social networks also have rich information of social activities of each user, such as tweeting, retweeting, and replying activities. Social science theories, such as social influence, suggests that the social activities could have potential impacts on the neighbors, and links in social networks are the results of the impacts taking place between different users. It motivates us to perform link prediction by taking advantage of the activity information. There has been a lot of proposed methods to measure the social influence through user activity information. However, traditional methods assigned some social influence measures to users universally based on their social activities, such as number of retweets or mentions the users have. But the social influence of one user towards others may not always remain the same with respect to different neighbors, which demands a personalized learning schema. Moreover, learning social influence from heterogeneous social activities is a nontrivial problem, since the information carried in the social activities is implicit and sometimes even noisy. Motivated by time-series analysis, we investigate the potential of modeling influence patterns based on pure timestamps, i.e., we aim to simplify the problem of processing heterogeneous social activities to a sequence of timestamps. Then we use timestamps as an abstraction of each activity to calculate the reduction of uncertainty of one users social activities given the knowledge of another one. The key idea is that, if a user i has impact on another user j, then given the activity timestamps of user i, the uncertainty in user j’s activity timestamps could be reduced. The uncertainty is measured by entropy in information theory, which is proven useful to detect the significant influence flow in time-series signals in information-theoretic applications. By employing the proposed influence metric, we incorporate the social activity information into the network structure, and learn a unified low-dimensional representation for all users. Thus, we could perform link prediction effectively based on the learned representation. Through comprehensive experiments, we demonstrate that the proposed method can perform better than the state-of-the-art methods in different real-world link prediction tasks

    Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks

    Full text link
    Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER.Comment: 10 pages. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, ACM, 201
    • …
    corecore