8,881 research outputs found

    BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder

    Full text link
    Network embedding aims at projecting the network data into a low-dimensional feature space, where the nodes are represented as a unique feature vector and network structure can be effectively preserved. In recent years, more and more online application service sites can be represented as massive and complex networks, which are extremely challenging for traditional machine learning algorithms to deal with. Effective embedding of the complex network data into low-dimension feature representation can both save data storage space and enable traditional machine learning algorithms applicable to handle the network data. Network embedding performance will degrade greatly if the networks are of a sparse structure, like the emerging networks with few connections. In this paper, we propose to learn the embedding representation for a target emerging network based on the broad learning setting, where the emerging network is aligned with other external mature networks at the same time. To solve the problem, a new embedding framework, namely "Deep alIgned autoencoder based eMbEdding" (DIME), is introduced in this paper. DIME handles the diverse link and attribute in a unified analytic based on broad learning, and introduces the multiple aligned attributed heterogeneous social network concept to model the network structure. A set of meta paths are introduced in the paper, which define various kinds of connections among users via the heterogeneous link and attribute information. The closeness among users in the networks are defined as the meta proximity scores, which will be fed into DIME to learn the embedding vectors of users in the emerging network. Extensive experiments have been done on real-world aligned social networks, which have demonstrated the effectiveness of DIME in learning the emerging network embedding vectors.Comment: 10 pages, 9 figures, 4 tables. Full paper is accepted by ICDM 2017, In: Proceedings of the 2017 IEEE International Conference on Data Mining

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media

    Evaluating Overfit and Underfit in Models of Network Community Structure

    Full text link
    A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.Comment: 22 pages, 13 figures, 3 table

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing
    • …
    corecore