10,890 research outputs found

    Complex Embeddings for Simple Link Prediction

    Get PDF
    In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.Comment: 10+2 pages, accepted at ICML 201

    Conditional network embeddings

    Get PDF
    Network Embeddings (NEs) map the nodes of a given network into dd-dimensional Euclidean space Rd\mathbb{R}^d. Ideally, this mapping is such that 'similar' nodes are mapped onto nearby points, such that the NE can be used for purposes such as link prediction (if 'similar' means being 'more likely to be connected') or classification (if 'similar' means 'being more likely to have the same label'). In recent years various methods for NE have been introduced, all following a similar strategy: defining a notion of similarity between nodes (typically some distance measure within the network), a distance measure in the embedding space, and a loss function that penalizes large distances for similar nodes and small distances for dissimilar nodes. A difficulty faced by existing methods is that certain networks are fundamentally hard to embed due to their structural properties: (approximate) multipartiteness, certain degree distributions, assortativity, etc. To overcome this, we introduce a conceptual innovation to the NE literature and propose to create \emph{Conditional Network Embeddings} (CNEs); embeddings that maximally add information with respect to given structural properties (e.g. node degrees, block densities, etc.). We use a simple Bayesian approach to achieve this, and propose a block stochastic gradient descent algorithm for fitting it efficiently. We demonstrate that CNEs are superior for link prediction and multi-label classification when compared to state-of-the-art methods, and this without adding significant mathematical or computational complexity. Finally, we illustrate the potential of CNE for network visualization

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient

    Adversarial Sets for Regularising Neural Link Predictors

    Get PDF
    In adversarial training, a set of models learn together by pursuing competing goals, usually defined on single data instances. However, in relational learning and other non-i.i.d domains, goals can also be defined over sets of instances. For example, a link predictor for the is-a relation needs to be consistent with the transitivity property: if is-a(x_1, x_2) and is-a(x_2, x_3) hold, is-a(x_1, x_3) needs to hold as well. Here we use such assumptions for deriving an inconsistency loss, measuring the degree to which the model violates the assumptions on an adversarially-generated set of examples. The training objective is defined as a minimax problem, where an adversary finds the most offending adversarial examples by maximising the inconsistency loss, and the model is trained by jointly minimising a supervised loss and the inconsistency loss on the adversarial examples. This yields the first method that can use function-free Horn clauses (as in Datalog) to regularise any neural link predictor, with complexity independent of the domain size. We show that for several link prediction models, the optimisation problem faced by the adversary has efficient closed-form solutions. Experiments on link prediction benchmarks indicate that given suitable prior knowledge, our method can significantly improve neural link predictors on all relevant metrics.Comment: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 201

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks
    • …
    corecore