41 research outputs found

    Linking Research and Policy: Assessing a Framework for Organic Agricultural Support in Ireland

    Get PDF
    This paper links social science research and agricultural policy through an analysis of support for organic agriculture and food. Globally, sales of organic food have experienced 20% annual increases for the past two decades, and represent the fastest growing segment of the grocery market. Although consumer interest has increased, farmers are not keeping up with demand. This is partly due to a lack of political support provided to farmers in their transition from conventional to organic production. Support policies vary by country and in some nations, such as the US, vary by state/province. There have been few attempts to document the types of support currently in place. This research draws on an existing Framework tool to investigate regionally specific and relevant policy support available to organic farmers in Ireland. This exploratory study develops a case study of Ireland within the framework of ten key categories of organic agricultural support: leadership, policy, research, technical support, financial support, marketing and promotion, education and information, consumer issues, inter-agency activities, and future developments. Data from the Irish Department of Agriculture, Fisheries and Food, the Irish Agriculture and Food Development Authority (Teagasc), and other governmental and semi-governmental agencies provide the basis for an assessment of support in each category. Assessments are based on the number of activities, availability of information to farmers, and attention from governmental personnel for each of the ten categories. This policy framework is a valuable tool for farmers, researchers, state agencies, and citizen groups seeking to document existing types of organic agricultural support and discover policy areas which deserve more attention

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Exploiting Diversity in Broadband Wireless Relay Networks

    Get PDF
    Fading is one of the most fundamental impairments to wireless communications. The standard approach to combating fading is by adding redundancy - or diversity - to help increase coverage and transmission speed. Motivated by the results in multiple-input multiple-output technologies, which are usually used at base stations or access points, cooperation commutation has been proposed to improve the performance of wireless networks which consist of low-cost single antenna devices. While the majority of the research in cooperative communication focuses on flat fading for its simplicity and easy analysis, in practice the underlying channels in broadband wireless communication systems such as cellular systems (UMTS/LTE) are more likely to exhibit frequency selective fading. In this dissertation, we consider a frequency selective fading channel model and explore distributed diversity techniques in broadband wireless relay networks, with consideration to practical issues such as channel estimation and complexity-performance tradeoffs. We first study a system model with one source, one destination and multiple decode-and-forward (DF) relays which share a single channel orthogonal to the source. We derive the diversity-multiplexing tradeoff (DMT) for several relaying strategies: best relay selection, random relay selection, and the case when all decoding relays participate. The best relay selection method selects the relay in the decoding set with the largest sum-squared relay-to-destination channel coefficients. This scheme can achieve the optimal DMT of the system at the expense of higher complexity, compared to the other two relaying strategies which do not always exploit the spatial diversity offered by the relays. Different from flat fading, we find special cases when the three relaying strategies have the same DMT. We further present a transceiver design and prove it can achieve the optimal DMT asymptotically. Monte Carlo simulations are presented to corroborate the theoretical analysis. We provide a detailed performance comparison of the three relaying strategies in channels encountered in practice. The work has been extended to systems with multiple amplify-and-forward relays. We propose two relay selection schemes with maximum likelihood sequential estimator and linear zero- forcing equalization at the destination respectively and both schemes can asymptotically achieve the optimal DMT. We next extend the results in the two-hop network, as previously studied, to multi-hop networks. In particular, we consider the routing problem in clustered multi-hop DF relay networks since clustered multi-hop wireless networks have attracted significant attention for their robustness to fading, hierarchical structure, and ability to exploit the broadcast nature of the wireless channel. We propose an opportunistic routing (or relay selection) algorithm for such networks. In contrast to the majority of existing approaches to routing in clustered networks, our algorithm only requires channel state information in the final hop, which is shown to be essential for reaping the diversity offered by the channel. In addition to exploiting the available diversity, our simple cross-layer algorithm has the flexibility to satisfy an additional routing objective such as maximization of network lifetime. We demonstrate through analysis and simulation that our proposed routing algorithm attains full diversity under certain conditions on the cluster sizes, and its diversity is equal to the diversity of more complicated approaches that require full channel state information. The final part of this dissertation considers channel estimation in relay networks. Channel state information is vital for exploiting diversity in cooperative networks. The existing literature on cooperative channel estimation assumes that block lengths are long and that channel estimation takes place within a fading block. However, if the forwarding delay needs to be reduced, short block lengths are preferred, and adaptive estimation through multiple blocks is required. In particular, we consider estimating the relay-to-destination channel in DF relay systems for which the presence of forwarded information is probabilistic since it is unknown whether the relay participates in the forwarding phase. A detector is used so that the update of the least mean square channel estimate is made only when the detector decides the presence of training data. We use the generalized likelihood ratio test and focus on the detector threshold for deciding whether the training sequence is present. We also propose a heuristic objective function which leads to a proper threshold to improve the convergence speed and reduce the estimation error. Extensive numerical results show the superior performance of using this threshold as opposed to fixed thresholds

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    EVA and shareholder value creation: an empirical study

    Get PDF
    In recent years, a variant of residual income often called Economic Value Added (EVA)' or Economic Income (EI) has become a popular concern in academia and business communities. This study investigates the general hypothesis that EVA is more highly associated with shareholder wealth and firm values than are traditional performance measures. Two commonly used value-based performance metrics namely, Total Shareholder Return (TSR) and Tobin's Q are also considered to highlight the valuerelevance of EVA vis-a-vis these measures in predicting shareholder wealth. Using a sample of panel data of around 12,000 firm-year observations taken from the Stem Stewart 1000 EVA/MVA database and the DATASTREAM file over the period 1991-2002, this study finds compelling evidence that shareholder value is a function of EVA. This study also provides evidence consistent with the notion that EVA outperforms other traditional performance measures in explaining shareholder wealth. Valuerelevance tests reveal EVA to be more highly associated with shareholder wealth than TSR and Tobin's Q. The incremental tests also suggest that EVA possesses the largest explanatory power (or information usefulness) over TSR and Tobin's Q. These results conclusively support the claims made by EVA proponents and further support the potential usefulness of the EVA metric for internal and external performance

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    From International Competitive Carrier to the WTO: A Survey of the FCC’s International Telecommunications Policy Initiatives 1985-1998

    Get PDF
    With the creation and implementation of the February 1996 World Trade Organization Agreement on Basic Telecommunications Services, the international telecommunications community has (at least on paper) promised ostensibly to move away from markets characterized by monopolies and toward a world of competition and deregulation. The big question, however, is whether these efforts will actually lead to better economic performance in the market for international telecommunications products and services. This Article examines one particular, yet extremely significant, portion of this inquiry—how much have U.S. international telecommunications policies specifically helped or hindered this process. This Article, after surveying Federal Communications Commission (FCC or Commission) precedent from the FCC’s first major international policy decision (International Competitive Carrier) through the FCC’s implementation of the WTO Agreement (January 1, 1998), concludes that despite a few laudable achievements, the FCC’s efforts have been marred by both the demonstrable rise of neo-mercantilism at the expense of consumer welfare, as well as substantial legal and economic analytical inconsistencies and outright errors resulting from their embarrassing attempts to implement and defend this neo-mercantilist policy. By adopting such legally and economically flawed policies, the United States has achieved neither trade policy’s basic goals of promoting U.S. investment abroad nor the maximization of consumer welfare under the FCC’s public interest mandate. Tragically, the only tangible achievement apparently has been the delay of effective WTO implementation and the rise of international ill-will against the United States and, a fortiori, U.S. firms
    corecore