1,887 research outputs found

    Packet scheduling in satellite LTE networks employing MIMO technology.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2014.Rapid growth in the number of mobile users and ongoing demand for different types of telecommunication services from mobile networks, have driven the need for new technologies that provide high data rates and satisfy their respective Quality of Service (QoS) requirements, irrespective of their location. The satellite component will play a vital role in these new technologies, since the terrestrial component is not able to provide global coverage due to economic and technical limitations. This has led to the emergence of Satellite Long Term Evolution (LTE) networks which employ Multiple-In Multiple-Out (MIMO) technology. In order to achieve the set QoS targets, required data rates and fairness among various users with different traffic demands in the satellite LTE network, it is crucial to design an effective scheduling and a sub-channel allocation scheme that will provide an optimal balance of all these requirements. It is against this background that this study investigates packet scheduling in satellite LTE networks employing MIMO technology. One of the main foci of this study is to propose new cross-layer based packet scheduling schemes, tagged Queue Aware Fair (QAF) and Channel Based Queue Sensitive (CBQS) scheduling schemes. The proposed schemes are designed to improve both fairness and network throughput without compromising users’ QoS demands, as they provide a good trade-off between throughput, QoS demands and fairness. They also improve the performance of the network in comparison with other scheduling schemes. The comparison is determined through simulations. Due to the fact that recent schedulers provide a trade-off among major performance indices, a new performance index to evaluate the overall performance of each scheduler is derived. This index is tagged the Scheduling Performance Metric (SPM). The study also investigates the impact of the long propagation delay and different effective isotropic radiated powers on the performance of the satellite LTE network. The results show that both have a significant impact on network performance. In order to actualize an optimal scheduling scheme for the satellite LTE network, the scheduling problem is formulated as an optimization function and an optimal solution is obtained using Karush-Kuhn-Tucker multipliers. The obtained Near Optimal Scheduling Scheme (NOSS), whose aim is to maximize the network throughput without compromising users’ QoS demands and fairness, provides better throughput and spectral efficiency performance than other schedulers. The comparison is determined through simulations. Based on the new SPM, the proposed NOSS1 and NOSS2 outperform other schedulers. A stability analysis is also presented to determine whether or not the proposed scheduler will provide a stable network. A fluid limit technique is used for the stability analysis. Finally, a sub-channel allocation scheme is proposed, with the aim of providing a better sub-channel or Physical Resource Block (PRB) allocation method, tagged the Utility Auction Based (UAB) subchannel allocation scheme that will improve the system performance of the satellite LTE network. The results show that the proposed method performs better than the other scheme. The comparison is obtained through simulations

    Neural network aided computation of mutual information for adaptation of spatial modulation

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Index Modulations, in the form of Spatial Modulation or Polarized Modulation, are gaining traction for both satellite and terrestrial next generation communication systems. Adaptive Spatial Modulation based links are needed to fully exploit the transmission capacity of time-variant channels. The adaptation of code and/or modulation requires a real-time evaluation of the channel achievable rates. Some existing results in the literature present a computational complexity which scales quadratically with the number of transmit antennas and the constellation order. Moreover, the accuracy of these approximations is low and it can lead to wrong Modulation and Coding Scheme selection. In this work we apply a Multilayer Feedforward Neural Network to compute the achievable rate of a generic Index Modulation link. The case of two antennas/polarizations is analyzed in depth, showing not only a one-hundred fold decrement of the Mean Square Error in the estimation of the capacity as compared with existing analytical approximations, but also a fifty times reduction of the computational complexity. Moreover, the extension to an arbitrary number of antennas is explained and supported with simulations. More generally, neural networks can be considered as promising candidates for the practical estimation of complex metrics in communication related settings.This work was funded by the Xunta de Galicia (Secretaria Xeral de Universidades) under a predoctoral scholarship (cofunded by the European Social Fund) and it was partially funded by the Agencia Estatal de Investigación (Spain) and the European Regional Development Fund (ERDF) under project MYRADA (TEC2016-75103-C2-2-R). It was also funded by the Xunta de Galicia and the ERDF (Agrupación Estratéxica Consolidada de Galicia accreditation 2016-2019). Furthermore, this work has received funding from the Spanish Agencia Estatal de Investigación under project TERESA, TEC2017-90093-C3-1-R (AEI/FEDER,UE); and from the Catalan Government (2017 SGR 891 and 2017 SGR 1479).Peer ReviewedPostprint (author's final draft

    Advanced Signal Processing Techniques for Fixed and Mobile Satellite Communications

    Get PDF
    Enabling ultra fast systems has been widely investigated during recent decades. Although polarization has been deployed from the beginning in satellite communications, nowadays it is being exploited to increase the throughput of satellite links. More precisely, the application of diversity techniques to the polarization domain may provide reliable, robust, and fast satellite communications. Better and more flexible spectrum use is also possible if transmission and reception can take place simultaneously in close or even overlapping frequency bands. In this paper we investigate novel signal processing techniques to increase the throughput of satellite communications in fixed and mobile scenarios. First, we investigate four-dimensional (4D) constellations for the forward link. Second, we focus on the mobile scenario and introduce an adaptive algorithm which selects the optimal tuple of modulation order, coding rate, and MIMO scheme that maximizes the throughput constraint to a maximum packet error rate. Finally, we describe the operation of radio transceivers which cancel actively the self-interference posed by the transmit signal when operating in full-duplex mode

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    • …
    corecore