10,922 research outputs found

    IMAGINE Final Report

    No full text

    A diversity-based approach to requirements tracing in new product development.

    Get PDF
    Production models emerged in recent times have stressed the need to face complex production contexts, characterized in particular by the rise in internal and environmental variability. In this work, a stylization of some elements concerning analysis and design of new products is given, and in particular those that involve definition and transfer phases in the development of innovative goods, where change and variability in requirements along development process are often high. This analysis has a twofold goal: first, to supply a conceptual frame for the close examination of some dynamics of requirement's integration into an artifact's design, in order to give account of their variability along development cycle; on the other side, to propose an approach based on simple similarity metrics, to be applied to linguistic descriptions of artifacts in the early phases of development process, in order to identify components in an artifact that undergo larger variability and therefore are to be paid more attention in the subsequent phases of life cycle.

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    An Action Selection Architecture for an Emotional Agent

    Get PDF
    An architecture for action selection is presented linking emotion, cognition and behavior. It defines the information and emotion processes of an agent. The architecture has been implemented and used in a prototype environment

    DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self

    Get PDF
    This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users
    corecore