3,588 research outputs found

    Hierarchical Linearly-Solvable Markov Decision Problems

    Full text link
    We present a hierarchical reinforcement learning framework that formulates each task in the hierarchy as a special type of Markov decision process for which the Bellman equation is linear and has analytical solution. Problems of this type, called linearly-solvable MDPs (LMDPs) have interesting properties that can be exploited in a hierarchical setting, such as efficient learning of the optimal value function or task compositionality. The proposed hierarchical approach can also be seen as a novel alternative to solving LMDPs with large state spaces. We derive a hierarchical version of the so-called Z-learning algorithm that learns different tasks simultaneously and show empirically that it significantly outperforms the state-of-the-art learning methods in two classical hierarchical reinforcement learning domains: the taxi domain and an autonomous guided vehicle task.Comment: 11 pages, 6 figures, 26th International Conference on Automated Planning and Schedulin

    Optimal Ensemble Control of Loads in Distribution Grids with Network Constraints

    Full text link
    Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in practice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.Comment: 7 pages, 6 figures, accepted PSCC 201

    Linearly Solvable Stochastic Control Lyapunov Functions

    Get PDF
    This paper presents a new method for synthesizing stochastic control Lyapunov functions for a class of nonlinear stochastic control systems. The technique relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation to a linear partial differential equation for a class of problems with a particular constraint on the stochastic forcing. This linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions are in fact viscosity super/subsolutions, and by the maximum principle are pointwise upper and lower bounds to the underlying value function, even for coarse polynomial approximations. Furthermore, the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method for generating nonlinear controllers with pointwise bounded distance from the optimal cost when using the optimal controller. These approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a-priori bounds on trajectory suboptimality when using these approximate value functions, as well as demonstrates that these methods, and bounds, can be applied to a more general class of nonlinear systems not obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio

    Nonparametric Infinite Horizon Kullback-Leibler Stochastic Control

    Full text link
    We present two nonparametric approaches to Kullback-Leibler (KL) control, or linearly-solvable Markov decision problem (LMDP) based on Gaussian processes (GP) and Nystr\"{o}m approximation. Compared to recently developed parametric methods, the proposed data-driven frameworks feature accurate function approximation and efficient on-line operations. Theoretically, we derive the mathematical connection of KL control based on dynamic programming with earlier work in control theory which relies on information theoretic dualities for the infinite time horizon case. Algorithmically, we give explicit optimal control policies in nonparametric forms, and propose on-line update schemes with budgeted computational costs. Numerical results demonstrate the effectiveness and usefulness of the proposed frameworks

    Optimal Navigation Functions for Nonlinear Stochastic Systems

    Full text link
    This paper presents a new methodology to craft navigation functions for nonlinear systems with stochastic uncertainty. The method relies on the transformation of the Hamilton-Jacobi-Bellman (HJB) equation into a linear partial differential equation. This approach allows for optimality criteria to be incorporated into the navigation function, and generalizes several existing results in navigation functions. It is shown that the HJB and that existing navigation functions in the literature sit on ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. In particular, it is shown that under certain criteria the optimal navigation function is related to Laplace's equation, previously used in the literature, through an exponential transform. Further, analytical solutions to the HJB are available in simplified domains, yielding guidance towards optimality for approximation schemes. Examples are used to illustrate the role that noise, and optimality can potentially play in navigation system design.Comment: Accepted to IROS 2014. 8 Page

    Linear Hamilton Jacobi Bellman Equations in High Dimensions

    Get PDF
    The Hamilton Jacobi Bellman Equation (HJB) provides the globally optimal solution to large classes of control problems. Unfortunately, this generality comes at a price, the calculation of such solutions is typically intractible for systems with more than moderate state space size due to the curse of dimensionality. This work combines recent results in the structure of the HJB, and its reduction to a linear Partial Differential Equation (PDE), with methods based on low rank tensor representations, known as a separated representations, to address the curse of dimensionality. The result is an algorithm to solve optimal control problems which scales linearly with the number of states in a system, and is applicable to systems that are nonlinear with stochastic forcing in finite-horizon, average cost, and first-exit settings. The method is demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with system dimension two, six, and twelve respectively.Comment: 8 pages. Accepted to CDC 201

    Ergodic Control and Polyhedral approaches to PageRank Optimization

    Full text link
    We study a general class of PageRank optimization problems which consist in finding an optimal outlink strategy for a web site subject to design constraints. We consider both a continuous problem, in which one can choose the intensity of a link, and a discrete one, in which in each page, there are obligatory links, facultative links and forbidden links. We show that the continuous problem, as well as its discrete variant when there are no constraints coupling different pages, can both be modeled by constrained Markov decision processes with ergodic reward, in which the webmaster determines the transition probabilities of websurfers. Although the number of actions turns out to be exponential, we show that an associated polytope of transition measures has a concise representation, from which we deduce that the continuous problem is solvable in polynomial time, and that the same is true for the discrete problem when there are no coupling constraints. We also provide efficient algorithms, adapted to very large networks. Then, we investigate the qualitative features of optimal outlink strategies, and identify in particular assumptions under which there exists a "master" page to which all controlled pages should point. We report numerical results on fragments of the real web graph.Comment: 39 page
    • …
    corecore