19,958 research outputs found

    Repetitive Delone Sets and Quasicrystals

    Full text link
    This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te

    Estimate of the number of one-parameter families of modules over a tame algebra

    Get PDF
    The problem of classifying modules over a tame algebra A reduces to a block matrix problem of tame type whose indecomposable canonical matrices are zero- or one-parameter. Respectively, the set of nonisomorphic indecomposable modules of dimension at most d divides into a finite number f(d,A) of modules and one-parameter series of modules. We prove that the number of m-by-n canonical parametric block matrices with a given partition into blocks is bounded by 4^s, where s is the number of free entries (which is at most mn), and estimate the number f(d,A).Comment: 23 page

    Estimate of the number of one-parameter families of modules over a tame algebra

    Get PDF
    The problem of classifying modules over a tame algebra A reduces to a block matrix problem of tame type whose indecomposable canonical matrices are zero- or one-parameter. Respectively, the set of nonisomorphic indecomposable modules of dimension at most d divides into a finite number f(d,A) of modules and one-parameter series of modules. We prove that the number of m-by-n canonical parametric block matrices with a given partition into blocks is bounded by 4^s, where s is the number of free entries (which is at most mn), and estimate the number f(d,A).Comment: 23 page

    Self-repairing Homomorphic Codes for Distributed Storage Systems

    Full text link
    Erasure codes provide a storage efficient alternative to replication based redundancy in (networked) storage systems. They however entail high communication overhead for maintenance, when some of the encoded fragments are lost and need to be replenished. Such overheads arise from the fundamental need to recreate (or keep separately) first a copy of the whole object before any individual encoded fragment can be generated and replenished. There has been recently intense interest to explore alternatives, most prominent ones being regenerating codes (RGC) and hierarchical codes (HC). We propose as an alternative a new family of codes to improve the maintenance process, which we call self-repairing codes (SRC), with the following salient features: (a) encoded fragments can be repaired directly from other subsets of encoded fragments without having to reconstruct first the original data, ensuring that (b) a fragment is repaired from a fixed number of encoded fragments, the number depending only on how many encoded blocks are missing and independent of which specific blocks are missing. These properties allow for not only low communication overhead to recreate a missing fragment, but also independent reconstruction of different missing fragments in parallel, possibly in different parts of the network. We analyze the static resilience of SRCs with respect to traditional erasure codes, and observe that SRCs incur marginally larger storage overhead in order to achieve the aforementioned properties. The salient SRC properties naturally translate to low communication overheads for reconstruction of lost fragments, and allow reconstruction with lower latency by facilitating repairs in parallel. These desirable properties make self-repairing codes a good and practical candidate for networked distributed storage systems
    • …
    corecore