599 research outputs found

    Performance analysis of massive multiple input multiple output for high speed railway

    Get PDF
    This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned

    Cognitive Radio Connectivity for Railway Transportation Networks

    Get PDF
    Reliable wireless networks for high speed trains require a significant amount of data communications for enabling safety features such as train collision avoidance and railway management. Cognitive radio integrates heterogeneous wireless networks that will be deployed in order to achieve intelligent communications in future railway systems. One of the primary technical challenges in achieving reliable communications for railways is the handling of high mobility environments involving trains, which includes significant Doppler shifts in the transmission as well as severe fading scenarios that makes it difficult to estimate wireless spectrum utilization. This thesis has two primary contributions: (1) The creation of a Heterogeneous Cooperative Spectrum Sensing (CSS) prototype system, and (2) the derivation of a Long Term Evolution for Railways (LTE-R) system performance analysis. The Heterogeneous CSS prototype system was implemented using Software-Defined Radios (SDRs) possessing different radio configurations. Both soft and hard-data fusion schemes were used in order to compare the signal source detection performance in real-time fading scenarios. For future smart railways, one proposed solution for enabling greater connectivity is to access underutilized spectrum as a secondary user via the dynamic spectrum access (DSA) paradigm. Since it will be challenging to obtain an accurate estimate of incumbent users via a single-sensor system within a real-world fading environment, the proposed cooperative spectrum sensing approach is employed instead since it can mitigate the effects of multipath and shadowing by utilizing the spatial and temporal diversity of a multiple radio network. Regarding the LTE-R contribution of this thesis, the performance analysis of high speed trains (HSTs) in tunnel environments would provide valuable insights with respect to the smart railway systems operating in high mobility scenarios in drastically impaired channels

    Advanced Fade Countermeasures for DVB-S2 Systems in Railway Scenarios

    Get PDF
    This paper deals with the analysis of advanced fade countermeasures for supporting DVB-S2 reception by mobile terminals mounted on high-speed trains. Recent market studies indicate this as a potential profitable market for satellite communications, provided that integration with wireless terrestrial networks can be implemented to bridge the satellite connectivity inside railway tunnels and large train stations. In turn, the satellite can typically offer the coverage of around 80% of the railway path with existing space infrastructure. This piece of work, representing the first step of a wider study, is focusing on the modifications which may be required in the DVB-S2 standard (to be employed in the forward link) in order to achieve reliable reception in a challenging environment such as the railway one. Modifications have been devised trying to minimize the impact on the existing air interface, standardized for fixed terminals

    Ensuring Long-Term Data Integrity

    Get PDF

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Mobile Cell-Free Massive MIMO: Challenges, Solutions, and Future Directions

    Full text link
    Cell-free (CF) massive multiple-input multiple-output (MIMO) systems, which exploit many geographically distributed access points to coherently serve user equipments via spatial multiplexing on the same time-frequency resource, has become a vital component of the next-generation mobile communication networks. Theoretically, CF massive MIMO systems have many advantages, such as large capacity, great coverage, and high reliability, but several obstacles must be overcome. In this article, we study the paradigm of CF massive MIMO-aided mobile communications, including the main application scenarios and associated deployment architectures. Furthermore, we thoroughly investigate the challenges of CF massive MIMO-aided mobile communications. We then exploit a novel predictor antenna, hierarchical cancellation, rate-splitting and dynamic clustering system for CF massive MIMO. Finally, several important research directions regarding CF massive MIMO for mobile communications are presented to facilitate further investigation.Comment: 9 pages, 4 figures, 2 tables, accepted by IEEE Wireless Communications Magazin
    • …
    corecore