2,644 research outputs found

    Explicit exactly energy-conserving methods for Hamiltonian systems

    Get PDF
    For Hamiltonian systems, simulation algorithms that exactly conserve numerical energy or pseudo-energy have seen extensive investigation. Most available methods either require the iterative solution of nonlinear algebraic equations at each time step, or are explicit, but where the exact conservation property depends on the exact evaluation of an integral in continuous time. Under further restrictions, namely that the potential energy contribution to the Hamiltonian is non-negative, newer techniques based on invariant energy quadratisation allow for exact numerical energy conservation and yield linearly implicit updates, requiring only the solution of a linear system at each time step. In this article, it is shown that, for a general class of Hamiltonian systems, and under the non-negativity condition on potential energy, it is possible to arrive at a fully explicit method that exactly conserves numerical energy. Furthermore, such methods are unconditionally stable, and are of comparable computational cost to the very simplest integration methods (such as Störmer-Verlet). A variant of this scheme leading to a conditionally-stable method is also presented, and follows from a splitting of the potential energy. Various numerical results are presented, in the case of the classic test problem of Fermi, Pasta and Ulam and for nonlinear systems of partial differential equations, including those describing high amplitude vibration of strings and plates

    Numerical Study of the Two-Species Vlasov-Amp\`{e}re System: Energy-Conserving Schemes and the Current-Driven Ion-Acoustic Instability

    Full text link
    In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Amp\`{e}re (VA) system and apply the methods to simulate current-driven ion-acoustic instability. The algorithm is generalized from our previous work for the single-species VA system and Vlasov-Maxwell (VM) system. The main feature of the schemes is their ability to preserve the total particle number and total energy on the fully discrete level regardless of mesh size. Those are desired properties of numerical schemes especially for long time simulations with under-resolved mesh. The conservation is realized by explicit and implicit energy-conserving temporal discretizations, and the discontinuous Galerkin (DG) spatial discretizations. We benchmarked our algorithms on a test example to check the one-species limit, and the current-driven ion-acoustic instability. To simulate the current-driven ion-acoustic instability, a slight modification for the implicit method is necessary to fully decouple the split equations. This is achieved by a Gauss-Seidel type iteration technique. Numerical results verified the conservation and performance of our methods

    The Energy Conserving Particle-in-Cell Method

    Full text link
    A new Particle-in-Cell (PIC) method, that conserves energy exactly, is presented. The particle equations of motion and the Maxwell's equations are differenced implicitly in time by the midpoint rule and solved concurrently by a Jacobian-free Newton Krylov (JFNK) solver. Several tests show that the finite grid instability is eliminated in energy conserving PIC simulations, and the method correctly describes the two-stream and Weibel instabilities, conserving exactly the total energy. The computational time of the energy conserving PIC method increases linearly with the number of particles, and it is rather insensitive to the number of grid points and time step. The kinetic enslavement technique can be effectively used to reduce the problem matrix size and the number of JFNK solver iterations
    • …
    corecore