3 research outputs found

    The investigation of electromagnetic radial force and associated vibration in permanent magnet synchronous machines

    Get PDF
    The rising public awareness of climate change and urban air pollution has been one of the key drivers for transport electrification. Such trend drastically accelerates the quest for high-power-and-torque-density electric drive systems. The rare-earth permanent magnet synchronous machine, with its excellent steady-state and dynamic characteristics, has been the ideal candidate for these applications. Specifically, the fractional-slot and concentrated-winding configuration is widely adopted due to its distinctive merits such as short end winding, low torque pulsation, and high efficiency. The vibration and the associated acoustic noise become one of the main parasitic issues of high-performance permanent magnet synchronous drives. These undesirable features mainly arise from mechanical connection failure, imperfect assembly, torque pulsation, and electromagnetic radial and axial force density waves. The high-power-and-torque-density requirement will only be ultimately fulfilled by the reduction of both electromagnetic active material and passive support structure. This results in inflated electromagnetic force density inside the electric machine. Besides, the sti.ness of the machine parts can be compromised and the resultant natural frequencies are significantly brought down. Therefore, the vibration and acoustic noise that are associated with the electromagnetic radial and axial force density waves become a burden for large deployment of these drives. This study is mainly dedicated to the investigation of the electromagnetic radial forced density and its associated vibration and acoustic noise in radial-flux permanent magnet synchronous machines. These machines are usually powered by voltage source inverter with pulse width modulation techniques and various control strategies. Consequently, the vibration problem not only lies on the permanent magnet synchronous machine but also highly relates to its drive and controller. Generally, the electromagnetic radial force density and its relevant vibration can be divided into low-frequency and high-frequency components based on their origins. The low-frequency electromagnetic radial force density waves stem from the magnetic field components by the permanent magnets and armature reaction of fundamental and phase-belt current harmonic components, while the high-frequency ones are introduced by the interactions between the main low-frequency and sideband highfrequency magnetic field components. Both permanent magnets and armature reaction current are the main sources of magnetic field in electric machines. Various drive-level modeling techniques are first reviewed, explored, and developed to evaluate the current harmonic components of the permanent magnet synchronous machine drive. Meanwhile, a simple yet e.ective analytical model is derived to promptly estimate the sideband current harmonic components in the drive with both sinusoidal and space-vector pulse width modulation techniques. An improved analytical method is also proposed to predict the magnetic field from permanent magnets in interior permanent magnet synchronous machines. Moreover, a universal permeance model is analytically developed to obtain the corresponding armature-reaction magnetic field components. With the permanent magnet and armature-reaction magnetic field components, the main electromagnetic radial force density components can be identified and estimated based on Maxwell stress tensor theory. The stator tooth structure has large impacts on both electromagnetic radial force density components and mechanical vibration behaviors. The stator tooth modulation e.ect has been comprehensively demonstrated and explained by both finite element analysis and experimental results. Analytical models of such e.ect are developed for prompt evaluation and insightful revelation. Based on the proposed models, multi-physics approaches are proposed to accurately predict low-frequency and high-frequency electromagnetic radial vibration. Such method is quite versatile and applicable for both integral-slot and fractional-slot concentrated-winding permanent magnet synchronous machines. Comprehensive experimental results are provided to underpin the validity of the proposed models and methods. This study commences on the derivations of the drive parameters such as torque angle, modulation index, and current harmonic components from circuit perspective and further progresses to evaluate and decouple the air-gap magnetic field components from field perspective. It carries on to dwell on the analytical estimations of the main critical electromagnetic radial force density components and stator tooth modulation e.ect. Based on the stator mechanical structure, the corresponding electromagnetic radial vibration and acoustic noise can be accurately predicted. Various analytical models have been developed throughout this study to provide a systematic tool for quick and e.ective investigation of electromagnetic radial force density, the associated vibration and acoustic noise in permanent magnet synchronous machine drive. They have all been rigorously validated by finite element analysis and experimental results. Besides, this study reveals not only a universal approach for electromagnetic radial vibration analysis but also insightful correlations from both machine and drive perspectives

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Modulation and control strategies for multilevel five-phase open-end winding drives

    Get PDF
    Industrial and automotive trends clearly demonstrate an increased interest in medium- and high-power variable speed drives. Despite constant progress in the technology, the semiconductor characteristics are still the bottleneck in drive designs, due to their limitations to block high voltage (several kilovolts) and conduct high current (several hundreds of amperes per-phase). For this reason and numerous other advantages, solutions based on multilevel inverters and multiphase machines are considered in recent years. The open-end winding drives are an alternative approach for drives construction. This thesis investigates carrier based pulse width modulation schemes for five-phase open-end winding drives. Two drive topologies, with isolated dc-links of two inverters, are considered. The first one consists of two two-level inverters and a five-phase machine. The second topology utilises one three- and one two-level five-phase inverter. It is shown that the same drive structure can produce a different number of phase voltage levels, when different dc-link voltages of two inverters are in use. Hence, dc-link voltage ratio is considered as an additional degree of freedom. An open-end winding structure that comprises of two two-level inverters offers harmonic performance equivalent to three- and four-level single-sided supply. The second drive structure under analysis is able to produce four, five and six voltage levels, depending on utilised dc-link voltage ratio. Modulation schemes are classified in two categories. So-called coupled modulation schemes are developed under the assumption that open-end winding drives are equivalent to certain single-sided multilevel solutions. This enables the application of slightly modified modulation methods for multilevel inverters, to the open-end winding configurations. As a consequence, number of utilised voltage levels can be higher than the sum of two inverters’ number of levels. However, this boost in number of levels relies on simultaneous switching in two inverters’ legs connected to the same drive phase,which causes so-called dead-time spikes. The second group, referred to in this thesis as decoupled modulation schemes, rely on the separate modulation of two inverters, using voltage references obtained by splitting the overall phase voltage reference, proportionally to inverters’ dc-link voltages. Hence, this kind of modulation offers somewhat worse harmonic performance, when compared to coupled modulation schemes. Special attention is paid to the stability of dc-link voltage levels, which is one of the most important figures of merits of quality for multilevel drives. Using a novel analysis approach, it is demonstrated that utilisation of optimal harmonic performance offered by coupled modulation methods leads to unstable dc-link voltages, but only in the cases where dc-link voltage ratio is used for increment of available number of voltage levels. Decoupled modulation methods offer stable dc-link voltages, regardless of drive configuration. One of the drawbacks of the analysed open-end winding drives is the need for two isolated dc sources, which form dc-link voltages of two inverters. For that reason, a possibility to use only one dc-source in open-end winding drives with isolated inverters is considered. Analysis shows that both drive topologies can be operated using so-called bulk and conditioning inverter control, where bulk inverter is supplied from an active dc source, but operates in staircase mode, while conditioning inverter performs high-frequency pulse width modulation, in order to suppress low-order harmonic content. This kind of operation is investigated in details for two specific configurations in which two inverters never operate at the same time in PWM mode, when coupled modulation methods are used. Comparison of the results shows that topology which comprises from one three- and one two-level inverter is more suitable for this kind of control. Together with previously analysed configurations and modulation strategies, dynamic performance of this novel drive is tested under the closed-loop speed control. Experimental results show that open-end winding drives are suitable for a wide range of applications
    corecore