56 research outputs found

    Relaxed Queues and Stacks from Read/Write Operations

    Get PDF
    Considering asynchronous shared memory systems in which any number of processes may crash, this work identifies and formally defines relaxations of queues and stacks that can be non-blocking or wait-free while being implemented using only read/write operations. Set-linearizability and Interval-linearizability are used to specify the relaxations formally, and precisely identify the subset of executions which preserve the original sequential behavior. The relaxations allow for an item to be returned more than once by different operations, but only in case of concurrency; we call such a property multiplicity. The stack implementation is wait-free, while the queue implementation is non-blocking. Interval-linearizability is used to describe a queue with multiplicity, with the additional relaxation that a dequeue operation can return weak-empty, which means that the queue might be empty. We present a read/write wait-free interval-linearizable algorithm of a concurrent queue. As far as we know, this work is the first that provides formalizations of the notions of multiplicity and weak-emptiness, which can be implemented on top of read/write registers only

    Obstruction-free Snapshot, Obstruction-free Consensus, and Fetch-and-add Modulo k

    Get PDF
    In this thesis we design algorithms for three problems: snapshot, consensus, and fetch-and-add modulo k. Our solutions for snapshot and consensus are non-anonymous and obstruction-free, and our solution for Fetch-and-add Modulo k is wait-free. We also conjecture an anonymous, obstruction-free solution to consensus

    Models for energy consumption of data structures and algorithms

    Get PDF
    EXCESS deliverable D2.1. More information at http://www.excess-project.eu/This deliverable reports our early energy models for data structures and algorithms based on both micro-benchmarks and concurrent algorithms. It reports the early results of Task 2.1 on investigating and modeling the trade-off between energy and performance in concurrent data structures and algorithms, which forms the basis for the whole work package 2 (WP2). The work has been conducted on the two main EXCESS platforms: (1) Intel platform with recent Intel multi-core CPUs and (2) Movidius embedded platform

    On Design and Applications of Practical Concurrent Data Structures

    Get PDF
    The proliferation of multicore processors is having an enormous impact on software design and development. In order to exploit parallelism available in multicores, there is a need to design and implement abstractions that programmers can use for general purpose applications development. A common abstraction for coordinated access to memory is a concurrent data structure. Concurrent data structures are challenging to design and implement as they are required to be correct, scalable, and practical under various application constraints. In this thesis, we contribute to the design of efficient concurrent data structures, propose new design techniques and improvements to existing implementations. Additionally, we explore the utilization of concurrent data structures in demanding application contexts such as data stream processing.In the first part of the thesis, we focus on data structures that are difficult to parallelize due to inherent sequential bottlenecks. We present a lock-free vector design that efficiently addresses synchronization bottlenecks by utilizing the combining technique. Typical combining techniques are blocking. Our design introduces combining without sacrificing non-blocking progress guarantees. We extend the vector to present a concurrent lock-free unbounded binary heap that implements a priority queue with mutable priorities.In the second part of the thesis, we shift our focus to concurrent search data structures. In order to offer strong progress guarantee, typical implementations of non-blocking search data structures employ a "helping" mechanism. However, helping may result in performance degradation. We propose help-optimality, which expresses optimization in amortized step complexity of concurrent operations. To describe the concept, we revisit the lock-free designs of a linked-list and a binary search tree and present improved algorithms. We design the algorithms without using any language/platform specific constructs; we do not use bit-stealing or runtime type introspection of objects. Thus, our algorithms are portable. We further delve into multi-dimensional data and similarity search. We present the first lock-free multi-dimensional data structure and linearizable nearest neighbor search algorithm. Our algorithm for nearest neighbor search is generic and can be adapted to other data structures.In the last part of the thesis, we explore the utilization of concurrent data structures for deterministic stream processing. We propose solutions to two challenges prevalent in data stream processing: (1) efficient processing on cloud as well as edge devices and (2) deterministic data-parallel processing at high-throughput and low-latency. As a first step, we present a methodology for customization of streaming aggregation on low-power multicore embedded platforms. Then we introduce Viper, a communication module that can be integrated into stream processing engines for the coordination of threads analyzing data in parallel

    Coûts de Synchronization dans les Programmes Parallèles et les Structures de Donnèes Simultanées

    Get PDF
    To use the computational power of modern computing machines, we have to deal with concurrent programs. Writing efficient concurrent programs is notoriously difficult, primarily due to the need of harnessing synchronization costs. In this thesis, we focus on synchronization costs in parallel programs and concurrent data structures.First, we present a novel granularity control technique for parallel programs designed for the dynamic multithreading environment. Then in the context of concurrent data structures, we consider the notion of concurrency-optimality and propose the first implementation of a concurrency-optimal binary search tree that, intuitively, accepts a concurrent schedule if and only if the schedule is correct. Also, we propose parallel combining, a technique that enables efficient implementations of concurrent data structures from their parallel batched counterparts. We validate the proposed techniques via experimental evaluations showing superior or comparable performance with respect to state-of-the-art algorithms.From a more formal perspective, we consider the phenomenon of helping in concurrent data structures. Intuitively, helping is observed when the order of some operation in a linearization is fixed by a step of another process. We show that no wait-free linearizable implementation of stack using read, write, compare&swap and fetch&add primitives can be help-free, correcting a mistake in an earlier proof by Censor-Hillel et al. Finally, we propose a simple way to analytically predict the throughput of data structures based on coarse-grained locking.Pour utiliser la puissance de calcul des ordinateurs modernes, nous devons écrire des programmes concurrents. L’écriture de programme concurrent efficace est notoirement difficile, principalement en raison de la nécessité de gérer les coûts de synchronization. Dans cette thèse, nous nous concentrons sur les coûts de synchronisation dans les programmes parallèles et les structures de données concurrentes.D’abord, nous présentons une nouvelle technique de contrôle de la granularité pour les programmes parallèles conçus pour un environnement de multi-threading dynamique. Ensuite, dans le contexte des structures de données concurrentes, nous considérons la notion d’optimalité de concurrence (concurrency-optimality) et proposons la première implémentation concurrence-optimal d’un arbre binaire de recherche qui, intuitivement, accepte un ordonnancement concurrent si et seulement si l’ordonnancement est correct. Nous proposons aussi la combinaison parallèle (parallel combining), une technique qui permet l’implémentation efficace des structures de données concurrences à partir de leur version parallèle par lots. Nous validons les techniques proposées par une évaluation expérimentale, qui montre des performances supérieures ou comparables à celles des algorithmes de l’état de l’art.Dans une perspective plus formelle, nous considérons le phénomène d’assistance (helping) dans des structures de données concurrentes. On observe un phénomène d’assistance quand l’ordre d’une opération d’un processus dans une trace linéarisée est fixée par une étape d’un autre processus. Nous montrons qu’aucune implémentation sans attente (wait-free) linéarisable d’une pile utilisant les primitives read, write, compare&swap et fetch&add ne peut être “sans assistance” (help-free), corrigeant une erreur dans une preuve antérieure de Censor-Hillel et al. Finalement, nous proposons une façon simple de prédire analytiquement le débit (throughput) des structures de données basées sur des verrous à gros grains
    • …
    corecore