50,848 research outputs found

    Unifying type systems for mobile processes

    Full text link
    We present a unifying framework for type systems for process calculi. The core of the system provides an accurate correspondence between essentially functional processes and linear logic proofs; fragments of this system correspond to previously known connections between proofs and processes. We show how the addition of extra logical axioms can widen the class of typeable processes in exchange for the loss of some computational properties like lock-freeness or termination, allowing us to see various well studied systems (like i/o types, linearity, control) as instances of a general pattern. This suggests unified methods for extending existing type systems with new features while staying in a well structured environment and constitutes a step towards the study of denotational semantics of processes using proof-theoretical methods

    Non-perturbative response: chaos versus disorder

    Full text link
    Quantized chaotic systems are generically characterized by two energy scales: the mean level spacing Δ\Delta, and the bandwidth Δb∝ℏ\Delta_b\propto\hbar. This implies that with respect to driving such systems have an adiabatic, a perturbative, and a non-perturbative regimes. A "strong" quantal non-perturbative response effect is found for {\em disordered} systems that are described by random matrix theory models. Is there a similar effect for quantized {\em chaotic} systems? Theoretical arguments cannot exclude the existence of a "weak" non-perturbative response effect, but our numerics demonstrate an unexpected degree of semiclassical correspondence.Comment: 8 pages, 2 figures, final version to be published in JP

    Schr\"odinger-Feynman quantization and composition of observables in general boundary quantum field theory

    Full text link
    We show that the Feynman path integral together with the Schr\"odinger representation gives rise to a rigorous and functorial quantization scheme for linear and affine field theories. Since our target framework is the general boundary formulation, the class of field theories that can be quantized in this way includes theories without a metric spacetime background. We also show that this quantization scheme is equivalent to a holomorphic quantization scheme proposed earlier and based on geometric quantization. We proceed to include observables into the scheme, quantized also through the path integral. We show that the quantized observables satisfy the canonical commutation relations, a feature shared with other quantization schemes also discussed. However, in contrast to other schemes the presented quantization also satisfies a correspondence between the composition of classical observables through their product and the composition of their quantized counterparts through spacetime gluing. In the special case of quantum field theory in Minkowski space this reproduces the operationally correct composition of observables encoded in the time-ordered product. We show that the quantization scheme also generalizes other features of quantum field theory such as the generating function of the S-matrix.Comment: 47 pages, LaTeX + AMS; v2: minor corrections, references update

    Ultra-short pulse compression using photonic crystal fibre

    Get PDF
    A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical properties of this novel medium in terms of high non-linearity and relatively small group velocity dispersion are shown to provide an ideal platform for the standard fibre pulse compression technique used directly on the nano-Joule output pulses from a commercial laser system. We report an order of magnitude reduction of the pulse width to 25 fs FWHM but predict a substantially improved performance with a dedicated fibre design. Good agreement is obtained with a simple model for the spectral broadening in the fibre

    Heisenberg (and Schrödinger, and Pauli) on hidden variables

    Get PDF
    Peer reviewedPreprin

    Simple geometrical interpretation of the linear character for the Zeno-line and the rectilinear diameter

    Full text link
    The unified geometrical interpretation of the linear character of the Zeno-line (unit compressibility line Z=1) and the rectilinear diameter is proposed. We show that recent findings about the properties of the Zeno-line and striking correlation with the rectilinear diameter line as well as other empirical relations can be naturally considered as the consequences of the projective isomorphism between the real molecular fluids and the lattice gas (Ising) model.Comment: 7 pages, 2 figure
    • 

    corecore