3,381 research outputs found

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    A nonparametric HMM for genetic imputation and coalescent inference

    Full text link
    Genetic sequence data are well described by hidden Markov models (HMMs) in which latent states correspond to clusters of similar mutation patterns. Theory from statistical genetics suggests that these HMMs are nonhomogeneous (their transition probabilities vary along the chromosome) and have large support for self transitions. We develop a new nonparametric model of genetic sequence data, based on the hierarchical Dirichlet process, which supports these self transitions and nonhomogeneity. Our model provides a parameterization of the genetic process that is more parsimonious than other more general nonparametric models which have previously been applied to population genetics. We provide truncation-free MCMC inference for our model using a new auxiliary sampling scheme for Bayesian nonparametric HMMs. In a series of experiments on male X chromosome data from the Thousand Genomes Project and also on data simulated from a population bottleneck we show the benefits of our model over the popular finite model fastPHASE, which can itself be seen as a parametric truncation of our model. We find that the number of HMM states found by our model is correlated with the time to the most recent common ancestor in population bottlenecks. This work demonstrates the flexibility of Bayesian nonparametrics applied to large and complex genetic data

    Stochastic Collapsed Variational Inference for Sequential Data

    Full text link
    Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm in the sequential data setting. Our algorithm is applicable to both finite hidden Markov models and hierarchical Dirichlet process hidden Markov models, and to any datasets generated by emission distributions in the exponential family. Our experiment results on two discrete datasets show that our inference is both more efficient and more accurate than its uncollapsed version, stochastic variational inference.Comment: NIPS Workshop on Advances in Approximate Bayesian Inference, 201

    Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions

    Get PDF
    We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths
    corecore