2,166 research outputs found

    Min-Cost Flow in Unit-Capacity Planar Graphs

    Get PDF
    In this paper we give an O~((nm)^(2/3) log C) time algorithm for computing min-cost flow (or min-cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C. For planar multigraphs, this improves upon the best known algorithms for general graphs: the O~(m^(10/7) log C) time algorithm of Cohen et al. [SODA 2017], the O(m^(3/2) log(nC)) time algorithm of Gabow and Tarjan [SIAM J. Comput. 1989] and the O~(sqrt(n) m log C) time algorithm of Lee and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial algorithm that breaks the Omega(m^(3/2)) time barrier for min-cost flow problem in planar graphs. To obtain our result we first give a very simple successive shortest paths based scaling algorithm for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This algorithm also runs in O~(m^(3/2) log C) time for general graphs, and, to the best of our knowledge, it has not been described before. We subsequently show how to implement this algorithm faster on planar graphs using well-established tools: r-divisions and efficient algorithms for computing (shortest) paths in so-called dense distance graphs

    Algorithms for flows and disjoint paths in planar graphs

    Get PDF
    In this dissertation we describe several algorithms for computing flows, connectivity, and disjoint paths in planar graphs. In all cases, the algorithms are either the first polynomial-time algorithms or are faster than all previously-known algorithms. First, we describe algorithms for the maximum flow problem in directed planar graphs with integer capacities on both vertices and arcs and with multiple sources and sinks. The algorithms are the first to solve the problem in near-linear time when the number of terminals is fixed and the capacities are polynomially bounded. As a byproduct, we get the first algorithm to solve the vertex-disjoint S-T paths problem in near-linear time when the number of terminals is fixed but greater than 2. We also modify our algorithms to handle real capacities in near-linear time when they are three terminals. Second, we describe algorithms to compute element-connectivity and a related structure called the reduced graph. We show that global element-connectivity in planar graphs can be found in linear time if the terminals can be covered by O(1) faces. We also show that the reduced graph can be computed in subquadratic time in planar graphs if the number of terminals is fixed. Third, we describe algorithms for solving or approximately solving the vertex-disjoint paths problem when we want to minimize the total length of the paths. For planar graphs, we describe: (1) an exact algorithm for the case of four pairs of terminals on a single face; and (2) a k-approximation algorithm for the case of k pairs of terminals on a single face. Fourth, we describe algorithms and a hardness result for the ideal orientation problem. We show that the problem is NP-hard in planar graphs. On the other hand, we show that the problem is polynomial-time solvable in planar graphs when the number of terminals is fixed, the terminals are all on the same face, and no two of the terminal pairs cross. We also describe an algorithm for serial instances of a generalization of the ideal orientation problem called the k-min-sum orientation problem

    Max-flow vitality in undirected unweighted planar graphs

    Full text link
    We show a fast algorithm for determining the set of relevant edges in a planar undirected unweighted graph with respect to the maximum flow. This is a special case of the \emph{max flow vitality} problem, that has been efficiently solved for general undirected graphs and stst-planar graphs. The \emph{vitality} of an edge of a graph with respect to the maximum flow between two fixed vertices ss and tt is defined as the reduction of the maximum flow caused by the removal of that edge. In this paper we show that the set of edges having vitality greater than zero in a planar undirected unweighted graph with nn vertices, can be found in O(nlogn)O(n \log n) worst-case time and O(n)O(n) space.Comment: 9 pages, 4 figure
    corecore