101,717 research outputs found

    Distributed Private Heavy Hitters

    Full text link
    In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters problem while preserving differential privacy in the fully distributed local model. In this model, there are n parties, each of which possesses a single element from a universe of size N. The heavy hitters problem is to find the identity of the most common element shared amongst the n parties. In the local model, there is no trusted database administrator, and so the algorithm must interact with each of the nn parties separately, using a differentially private protocol. We give tight information-theoretic upper and lower bounds on the accuracy to which this problem can be solved in the local model (giving a separation between the local model and the more common centralized model of privacy), as well as computationally efficient algorithms even in the case where the data universe N may be exponentially large

    Constraint Complexity of Realizations of Linear Codes on Arbitrary Graphs

    Full text link
    A graphical realization of a linear code C consists of an assignment of the coordinates of C to the vertices of a graph, along with a specification of linear state spaces and linear ``local constraint'' codes to be associated with the edges and vertices, respectively, of the graph. The \k-complexity of a graphical realization is defined to be the largest dimension of any of its local constraint codes. \k-complexity is a reasonable measure of the computational complexity of a sum-product decoding algorithm specified by a graphical realization. The main focus of this paper is on the following problem: given a linear code C and a graph G, how small can the \k-complexity of a realization of C on G be? As useful tools for attacking this problem, we introduce the Vertex-Cut Bound, and the notion of ``vc-treewidth'' for a graph, which is closely related to the well-known graph-theoretic notion of treewidth. Using these tools, we derive tight lower bounds on the \k-complexity of any realization of C on G. Our bounds enable us to conclude that good error-correcting codes can have low-complexity realizations only on graphs with large vc-treewidth. Along the way, we also prove the interesting result that the ratio of the \k-complexity of the best conventional trellis realization of a length-n code C to the \k-complexity of the best cycle-free realization of C grows at most logarithmically with codelength n. Such a logarithmic growth rate is, in fact, achievable.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore