14 research outputs found

    Linear Time Parameterized Algorithms via Skew-Symmetric Multicuts

    Full text link
    A skew-symmetric graph (D=(V,A),σ)(D=(V,A),\sigma) is a directed graph DD with an involution σ\sigma on the set of vertices and arcs. In this paper, we introduce a separation problem, dd-Skew-Symmetric Multicut, where we are given a skew-symmetric graph DD, a family of T\cal T of dd-sized subsets of vertices and an integer kk. The objective is to decide if there is a set XAX\subseteq A of kk arcs such that every set JJ in the family has a vertex vv such that vv and σ(v)\sigma(v) are in different connected components of D=(V,A(Xσ(X))D'=(V,A\setminus (X\cup \sigma(X)). In this paper, we give an algorithm for this problem which runs in time O((4d)k(m+n+))O((4d)^{k}(m+n+\ell)), where mm is the number of arcs in the graph, nn the number of vertices and \ell the length of the family given in the input. Using our algorithm, we show that Almost 2-SAT has an algorithm with running time O(4kk4)O(4^kk^4\ell) and we obtain algorithms for {\sc Odd Cycle Transversal} and {\sc Edge Bipartization} which run in time O(4kk4(m+n))O(4^kk^4(m+n)) and O(4kk5(m+n))O(4^kk^5(m+n)) respectively. This resolves an open problem posed by Reed, Smith and Vetta [Operations Research Letters, 2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi and Reed [SODA, 2010]. We also show that Deletion q-Horn Backdoor Set Detection is a special case of 3-Skew-Symmetric Multicut, giving us an algorithm for Deletion q-Horn Backdoor Set Detection which runs in time O(12kk5)O(12^kk^5\ell). This gives the first fixed-parameter tractable algorithm for this problem answering a question posed in a paper by a superset of the authors [STACS, 2013]. Using this result, we get an algorithm for Satisfiability which runs in time O(12kk5)O(12^kk^5\ell) where kk is the size of the smallest q-Horn deletion backdoor set, with \ell being the length of the input formula

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals TV(G)T \subseteq V(G), T=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G=(V,E)G'=(V',E') with TV(G)T \subseteq V(G'), such that for every subset STS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in GG', and V(G)=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)k(d+1))1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},,{s,t}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph GG^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, GG^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page

    Parameterized complexity and approximability of directed odd cycle transversal

    Get PDF
    A directed odd cycle transversal of a directed graph (digraph) D is a vertex set S that intersects every odd directed cycle of D. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph D and an integer k. The objective is to determine whether there exists a directed odd cycle transversal of D of size at most k. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size k by showing that DOCT does not admit an algorithm with running time f(k)nO(1) unless FPT = W[1]. On the positive side, we give a factor 2 fixed-parameter approximation (FPT approximation) algorithm for the problem. More precisely our algorithm takes as input D and k, runs in time 2O(k)nO(1), and either concludes that D does not have a directed odd cycle transversal of size at most k, or produces a solution of size at most 2k. Finally assuming gap-ETH, we show that there exists an ϵ > 0 such that DOCT does not admit a factor (1 + ϵ) FPT-approximation algorithm

    Linear-Time FPT Algorithms via Network Flow

    Full text link
    In the area of parameterized complexity, to cope with NP-Hard problems, we introduce a parameter k besides the input size n, and we aim to design algorithms (called FPT algorithms) that run in O(f(k)n^d) time for some function f(k) and constant d. Though FPT algorithms have been successfully designed for many problems, typically they are not sufficiently fast because of huge f(k) and d. In this paper, we give FPT algorithms with small f(k) and d for many important problems including Odd Cycle Transversal and Almost 2-SAT. More specifically, we can choose f(k) as a single exponential (4^k) and d as one, that is, linear in the input size. To the best of our knowledge, our algorithms achieve linear time complexity for the first time for these problems. To obtain our algorithms for these problems, we consider a large class of integer programs, called BIP2. Then we show that, in linear time, we can reduce BIP2 to Vertex Cover Above LP preserving the parameter k, and we can compute an optimal LP solution for Vertex Cover Above LP using network flow. Then, we perform an exhaustive search by fixing half-integral values in the optimal LP solution for Vertex Cover Above LP. A bottleneck here is that we need to recompute an LP optimal solution after branching. To address this issue, we exploit network flow to update the optimal LP solution in linear time.Comment: 20 page

    Solving hard cut problems via flow-augmentation

    Get PDF
    We present a new technique for designing FPT algorithms for graph cut problems in undirected graphs, which we call flow augmentation. Our technique is applicable to problems that can be phrased as a search for an (edge) (s,t)(s,t)-cut of cardinality at most kk in an undirected graph GG with designated terminals ss and tt. More precisely, we consider problems where an (unknown) solution is a set ZE(G)Z \subseteq E(G) of size at most kk such that (1) in GZG-Z, ss and tt are in distinct connected components, (2) every edge of ZZ connects two distinct connected components of GZG-Z, and (3) if we define the set Zs,tZZ_{s,t} \subseteq Z as these edges eZe \in Z for which there exists an (s,t)(s,t)-path PeP_e with E(Pe)Z={e}E(P_e) \cap Z = \{e\}, then Zs,tZ_{s,t} separates ss from tt. We prove that in this scenario one can in randomized time kO(1)(V(G)+E(G))k^{O(1)} (|V(G)|+|E(G)|) add a number of edges to the graph so that with 2O(klogk)2^{-O(k \log k)} probability no added edge connects two components of GZG-Z and Zs,tZ_{s,t} becomes a minimum cut between ss and tt. We apply our method to obtain a randomized FPT algorithm for a notorious "hard nut" graph cut problem we call Coupled Min-Cut. This problem emerges out of the study of FPT algorithms for Min CSP problems, and was unamenable to other techniques for parameterized algorithms in graph cut problems, such as Randomized Contractions, Treewidth Reduction or Shadow Removal. To demonstrate the power of the approach, we consider more generally Min SAT(Γ\Gamma), parameterized by the solution cost. We show that every problem Min SAT(Γ\Gamma) is either (1) FPT, (2) W[1]-hard, or (3) able to express the soft constraint (uv)(u \to v), and thereby also the min-cut problem in directed graphs. All the W[1]-hard cases were known or immediate, and the main new result is an FPT algorithm for a generalization of Coupled Min-Cut
    corecore