2,900 research outputs found

    How to Upscale The Kinetics of Complex Microsystems

    Full text link
    The rate constants of chemical reactions are typically inferred from slopes and intersection points of observed concentration curves. In small systems that operate far below the thermodynamic limit, these concentration profiles become stochastic and such an inference is less straightforward. By using elements of queuing theory, we introduce a procedure for inferring (time dependent) kinetic parameters from microscopic observations that are given by molecular simulations of many simultaneously reacting species. We demonstrate that with this procedure it is possible to assimilate the results of molecular simulations in such a way that the latter become descriptive on the macroscopic scale. As an example, we upscale the kinetics of a molecular dynamics system that forms a complex molecular network. Incidentally, we report that the kinetic parameters of this system feature a peculiar time and temperature dependences, whereas the probability of a network strand to close a cycle follows a universal distribution

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Detection of Core-Periphery Structure in Networks Using Spectral Methods and Geodesic Paths

    Full text link
    We introduce several novel and computationally efficient methods for detecting "core--periphery structure" in networks. Core--periphery structure is a type of mesoscale structure that includes densely-connected core vertices and sparsely-connected peripheral vertices. Core vertices tend to be well-connected both among themselves and to peripheral vertices, which tend not to be well-connected to other vertices. Our first method, which is based on transportation in networks, aggregates information from many geodesic paths in a network and yields a score for each vertex that reflects the likelihood that a vertex is a core vertex. Our second method is based on a low-rank approximation of a network's adjacency matrix, which can often be expressed as a tensor-product matrix. Our third approach uses the bottom eigenvector of the random-walk Laplacian to infer a coreness score and a classification into core and peripheral vertices. We also design an objective function to (1) help classify vertices into core or peripheral vertices and (2) provide a goodness-of-fit criterion for classifications into core versus peripheral vertices. To examine the performance of our methods, we apply our algorithms to both synthetically-generated networks and a variety of networks constructed from real-world data sets.Comment: This article is part of EJAM's December 2016 special issue on "Network Analysis and Modelling" (available at https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/issue/journal-ejm-volume-27-issue-6/D245C89CABF55DBF573BB412F7651ADB

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed
    • …
    corecore