9,905 research outputs found

    EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Cliqe on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics ’90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show that the disjoint union of two odd cycles is never the complement of a disk graph nor of a unit (3-dimensional) ball graph. From that fact and existing results, we derive a simple QPTAS and a subexponential algorithm running in time 2O˜(n2/3) for Maximum Cliqe on disk and unit ball graphs. We then obtain a randomized EPTAS for computing the independence number on graphs having no disjoint union of two odd cycles as an induced subgraph, bounded VC-dimension, and linear independence number. This, in combination with our structural results, yields a randomized EPTAS for Max Cliqe on disk and unit ball graphs. Max Cliqe on unit ball graphs is equivalent to finding, given a collection of points in R3, a maximum subset of points with diameter at most some fixed value. In stark contrast, Maximum Cliqe on ball graphs and unit 4-dimensional ball graphs, as well as intersection graphs of filled ellipses (even close to unit disks) or filled triangles is unlikely to have such algorithms. Indeed, we show that, for all those problems, there is a constant ratio of approximation which cannot be attained even in time 2n1−ε, unless the Exponential Time Hypothesis fails

    Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

    Get PDF
    We revisit a classical graph-theoretic problem, the single-source shortest-path (SSSP) problem, in weighted unit-disk graphs. We first propose an exact (and deterministic) algorithm which solves the problem in O(n log^2 n) time using linear space, where n is the number of the vertices of the graph. This significantly improves the previous deterministic algorithm by Cabello and Jejcic [CGTA\u2715] which uses O(n^{1+delta}) time and O(n^{1+delta}) space (for any small constant delta>0) and the previous randomized algorithm by Kaplan et al. [SODA\u2717] which uses O(n log^{12+o(1)} n) expected time and O(n log^3 n) space. More specifically, we show that if the 2D offline insertion-only (additively-)weighted nearest-neighbor problem with k operations (i.e., insertions and queries) can be solved in f(k) time, then the SSSP problem in weighted unit-disk graphs can be solved in O(n log n+f(n)) time. Using the same framework with some new ideas, we also obtain a (1+epsilon)-approximate algorithm for the problem, using O(n log n + n log^2(1/epsilon)) time and linear space. This improves the previous (1+epsilon)-approximate algorithm by Chan and Skrepetos [SoCG\u2718] which uses O((1/epsilon)^2 n log n) time and O((1/epsilon)^2 n) space. Because of the Omega(n log n)-time lower bound of the problem (even when approximation is allowed), both of our algorithms are almost optimal

    Shortest Paths in Geometric Intersection Graphs

    Get PDF
    This thesis studies shortest paths in geometric intersection graphs, which can model, among others, ad-hoc communication and transportation networks. First, we consider two classical problems in the field of algorithms, namely Single-Source Shortest Paths (SSSP) and All-Pairs Shortest Paths (APSP). In SSSP we want to compute the shortest paths from one vertex of a graph to all other vertices, while in APSP we aim to find the shortest path between every pair of vertices. Although there is a vast literature for these problems in many graph classes, the case of geometric intersection graphs has been only partially addressed. In unweighted unit-disk graphs, we show that we can solve SSSP in linear time, after presorting the disk centers with respect to their coordinates. Furthermore, we give the first (slightly) subquadratic-time APSP algorithm by using our new SSSP result, bit tricks, and a shifted-grid-based decomposition technique. In unweighted, undirected geometric intersection graphs, we present a simple and general technique that reduces APSP to static, offline intersection detection. Consequently, we give fast APSP algorithms for intersection graphs of arbitrary disks, axis-aligned line segments, arbitrary line segments, d-dimensional axis-aligned boxes, and d-dimensional axis-aligned unit hypercubes. We also provide a near-linear-time SSSP algorithm for intersection graphs of axis-aligned line segments by a reduction to dynamic orthogonal point location. Then, we study two problems that have received considerable attention lately. The first is that of computing the diameter of a graph, i.e., the longest shortest-path distance between any two vertices. In the second, we want to preprocess a graph into a data structure, called distance oracle, such that the shortest path (or its length) between any two query vertices can be found quickly. Since these problems are often too costly to solve exactly, we study their approximate versions. Following a long line of research, we employ Voronoi diagrams to compute a (1+epsilon)-approximation of the diameter of an undirected, non-negatively-weighted planar graph in time near linear in the input size and polynomial in 1/epsilon. The previously best solution had exponential dependency on the latter. Using similar techniques, we can also construct the first (1+epsilon)-approximate distance oracles with similar preprocessing time and space and only O(log(1/\epsilon)) query time. In weighted unit-disk graphs, we present the first near-linear-time (1+epsilon)-approximation algorithm for the diameter and for other related problems, such as the radius and the bichromatic closest pair. To do so, we combine techniques from computational geometry and planar graphs, namely well-separated pair decompositions and shortest-path separators. We also show how to extend our approach to obtain O(1)-query-time (1+epsilon)-approximate distance oracles with near linear preprocessing time and space. Then, we apply these oracles, along with additional ideas, to build a data structure for the (1+epsilon)-approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem in truly subcubic time

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    An Order-based Algorithm for Minimum Dominating Set with Application in Graph Mining

    Full text link
    Dominating set is a set of vertices of a graph such that all other vertices have a neighbour in the dominating set. We propose a new order-based randomised local search (RLSo_o) algorithm to solve minimum dominating set problem in large graphs. Experimental evaluation is presented for multiple types of problem instances. These instances include unit disk graphs, which represent a model of wireless networks, random scale-free networks, as well as samples from two social networks and real-world graphs studied in network science. Our experiments indicate that RLSo_o performs better than both a classical greedy approximation algorithm and two metaheuristic algorithms based on ant colony optimisation and local search. The order-based algorithm is able to find small dominating sets for graphs with tens of thousands of vertices. In addition, we propose a multi-start variant of RLSo_o that is suitable for solving the minimum weight dominating set problem. The application of RLSo_o in graph mining is also briefly demonstrated
    • …
    corecore