37 research outputs found

    Acute and nonobtuse triangulations of polyhedral surfaces

    Get PDF
    In this paper, we prove the existence of acute triangulations for general polyhedral surfaces. We also show how to obtain nonobtuse subtriangulations of triangulated polyhedral surfaces.Massachusetts Institute of Technology (UROP Program

    On nonobtuse simplicial partitions

    Get PDF

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Survey of two-dimensional acute triangulations

    Get PDF
    AbstractWe give a brief introduction to the topic of two-dimensional acute triangulations, mention results on related areas, survey existing achievements–with emphasis on recent activity–and list related open problems, both concrete and conceptual

    A Contribution to Triangulation Algorithms for Simple Polygons

    Get PDF
    Decomposing simple polygon into simpler components is one of the basic tasks in computational geometry and its applications. The most important simple polygon decomposition is triangulation. The known algorithms for polygon triangulation can be classified into three groups: algorithms based on diagonal inserting, algorithms based on Delaunay triangulation, and the algorithms using Steiner points. The paper briefly explains the most popular algorithms from each group and summarizes the common features of the groups. After that four algorithms based on diagonals insertion are tested: a recursive diagonal inserting algorithm, an ear cutting algorithm, Kong’s Graham scan algorithm, and Seidel’s randomized incremental algorithm. An analysis concerning speed, the quality of the output triangles and the ability to handle holes is done at the end
    corecore