392 research outputs found

    Low-Complexity LP Decoding of Nonbinary Linear Codes

    Full text link
    Linear Programming (LP) decoding of Low-Density Parity-Check (LDPC) codes has attracted much attention in the research community in the past few years. LP decoding has been derived for binary and nonbinary linear codes. However, the most important problem with LP decoding for both binary and nonbinary linear codes is that the complexity of standard LP solvers such as the simplex algorithm remains prohibitively large for codes of moderate to large block length. To address this problem, two low-complexity LP (LCLP) decoding algorithms for binary linear codes have been proposed by Vontobel and Koetter, henceforth called the basic LCLP decoding algorithm and the subgradient LCLP decoding algorithm. In this paper, we generalize these LCLP decoding algorithms to nonbinary linear codes. The computational complexity per iteration of the proposed nonbinary LCLP decoding algorithms scales linearly with the block length of the code. A modified BCJR algorithm for efficient check-node calculations in the nonbinary basic LCLP decoding algorithm is also proposed, which has complexity linear in the check node degree. Several simulation results are presented for nonbinary LDPC codes defined over Z_4, GF(4), and GF(8) using quaternary phase-shift keying and 8-phase-shift keying, respectively, over the AWGN channel. It is shown that for some group-structured LDPC codes, the error-correcting performance of the nonbinary LCLP decoding algorithms is similar to or better than that of the min-sum decoding algorithm.Comment: To appear in IEEE Transactions on Communications, 201

    Codeword-Independent Performance of Nonbinary Linear Codes Under Linear-Programming and Sum-Product Decoding

    Full text link
    A coded modulation system is considered in which nonbinary coded symbols are mapped directly to nonbinary modulation signals. It is proved that if the modulator-channel combination satisfies a particular symmetry condition, the codeword error rate performance is independent of the transmitted codeword. It is shown that this result holds for both linear-programming decoders and sum-product decoders. In particular, this provides a natural modulation mapping for nonbinary codes mapped to PSK constellations for transmission over memoryless channels such as AWGN channels or flat fading channels with AWGN.Comment: 5 pages, Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6-11, 200

    A Unified Framework for Linear-Programming Based Communication Receivers

    Full text link
    It is shown that a large class of communication systems which admit a sum-product algorithm (SPA) based receiver also admit a corresponding linear-programming (LP) based receiver. The two receivers have a relationship defined by the local structure of the underlying graphical model, and are inhibited by the same phenomenon, which we call 'pseudoconfigurations'. This concept is a generalization of the concept of 'pseudocodewords' for linear codes. It is proved that the LP receiver has the 'maximum likelihood certificate' property, and that the receiver output is the lowest cost pseudoconfiguration. Equivalence of graph-cover pseudoconfigurations and linear-programming pseudoconfigurations is also proved. A concept of 'system pseudodistance' is defined which generalizes the existing concept of pseudodistance for binary and nonbinary linear codes. It is demonstrated how the LP design technique may be applied to the problem of joint equalization and decoding of coded transmissions over a frequency selective channel, and a simulation-based analysis of the error events of the resulting LP receiver is also provided. For this particular application, the proposed LP receiver is shown to be competitive with other receivers, and to be capable of outperforming turbo equalization in bit and frame error rate performance.Comment: 13 pages, 6 figures. To appear in the IEEE Transactions on Communication

    Correcting a Fraction of Errors in Nonbinary Expander Codes with Linear Programming

    Full text link
    A linear-programming decoder for \emph{nonbinary} expander codes is presented. It is shown that the proposed decoder has the maximum-likelihood certificate properties. It is also shown that this decoder corrects any pattern of errors of a relative weight up to approximately 1/4 \delta_A \delta_B (where \delta_A and \delta_B are the relative minimum distances of the constituent codes).Comment: Part of this work was presented at the IEEE International Symposium on Information Theory 2009, Seoul, Kore

    Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance

    Full text link
    We examine LDPC codes decoded using linear programming (LP). Four contributions to the LP framework are presented. First, a new method of tightening the LP relaxation, and thus improving the LP decoder, is proposed. Second, we present an algorithm which calculates a lower bound on the minimum distance of a specific code. This algorithm exhibits complexity which scales quadratically with the block length. Third, we propose a method to obtain a tight lower bound on the fractional distance, also with quadratic complexity, and thus less than previously-existing methods. Finally, we show how the fundamental LP polytope for generalized LDPC codes and nonbinary LDPC codes can be obtained.Comment: 17 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    An Iterative Joint Linear-Programming Decoding of LDPC Codes and Finite-State Channels

    Full text link
    In this paper, we introduce an efficient iterative solver for the joint linear-programming (LP) decoding of low-density parity-check (LDPC) codes and finite-state channels (FSCs). In particular, we extend the approach of iterative approximate LP decoding, proposed by Vontobel and Koetter and explored by Burshtein, to this problem. By taking advantage of the dual-domain structure of the joint decoding LP, we obtain a convergent iterative algorithm for joint LP decoding whose structure is similar to BCJR-based turbo equalization (TE). The result is a joint iterative decoder whose complexity is similar to TE but whose performance is similar to joint LP decoding. The main advantage of this decoder is that it appears to provide the predictability of joint LP decoding and superior performance with the computational complexity of TE.Comment: To appear in Proc. IEEE ICC 2011, Kyoto, Japan, June 5-9, 201

    Neural networks, error-correcting codes, and polynomials over the binary n-cube

    Get PDF
    Several ways of relating the concept of error-correcting codes to the concept of neural networks are presented. Performing maximum-likelihood decoding in a linear block error-correcting code is shown to be equivalent to finding a global maximum of the energy function of a certain neural network. Given a linear block code, a neural network can be constructed in such a way that every codeword corresponds to a local maximum. The connection between maximization of polynomials over the n-cube and error-correcting codes is also investigated; the results suggest that decoding techniques can be a useful tool for solving such maximization problems. The results are generalized to both nonbinary and nonlinear codes
    corecore