21,989 research outputs found

    Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: an ab-initio study

    Get PDF
    We characterize the electronic structure and elasticity of monolayer transition-metal dichalcogenides MX2 (M=Mo, W, Sn, Hf and X=S, Se, Te) with 2H and 1T structures using fully relativistic first principles calculations based on density functional theory. We focus on the role of strain on the band structure and band alignment across the series 2D materials. We find that strain has a significant effect on the band gap; a biaxial strain of 1% decreases the band gap in the 2H structures, by as a much 0.2 eV in MoS2 and WS2, while increasing it for the 1T materials. These results indicate that strain is a powerful avenue to modulate their properties; for example, strain enables the formation of, otherwise impossible, broken gap heterostructures within the 2H class. These calculations provide insight and quantitative information for the rational development of heterostructures based on these class of materials accounting for the effect of strain.Comment: 16 pages, 4 figures, 1 table, supplementary materia
    corecore