35,381 research outputs found

    Theory and Methodology of Integrated Ladder Filter Design

    Get PDF
    This thesis presents a systematic study of integrated ladder filter design. A theoretical model of ladder structures is first established in terms of a family of symmetric matrix polynomial systems (SMPS's). It is shown that SMPS's are a natural mathematical abstraction of ladder circuits. The properties of stability, canonical (or minimal) realisation, low-sensitivity and low-noise, are proved for SMPS's under certain very simple conditions. A design methodology is then presented for active-RC, SC and digital ladders. The basic principle is that a SMPS can be decomposed by means of matrix factorisation into several linear systems, which can then be easily realised by active or digital circuits. It is shown that many existing methods, such as leapfrog or coupled biquads, result from some special decompositions. It is further shown that LU and UL factorisations drawn from numerical methods can be used to develop several novel structures (so-called LUD and ULD structures) which demonstrate significant improvments over existing ones regarding sensitivity, component area and dynamic range. This is confirmed by examples and statistical investigations. Besides the matrix methods applicable to standard lowpass and bandpass cases, further research is undertaken for bandstop, highpass and allpass filter designs. It is demonstrated that frequency transformations can be used to reduce the hardware cost in many classical filtering cases. A novel building block, the so called TWINTOR, is introduced in bandstop design to reduce the switching rate. Active-RC and SC allpass ladders are constructed and proved to have significant advantages over the existing biquad circuits. Matrix methods also provide an efficient vechicle for the development of a filter design software package called PANDDA. Its many outstanding features are described. Finally measured results from two fabricated LUD SC filters are presented. They confirm the high quality of the novel circuit structures developed by this research

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs

    Get PDF
    This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model available in the literature

    Digital Current-Control Schemes

    Get PDF
    The paper is about comparing the performance of digital signal processor-based current controllers for three-phase active power filters. The wide use of nonlinear loads, such as front-end rectifiers connected to the power distribution systems for dc supply or inverter-based applications, causes significant power quality degradation in power distribution networks in terms of current/voltage harmonics, power factor, and resonance problems. Passive LC filters (together with capacitor banks for reactive power compensation) are simple, low-cost, and high-efficiency solution

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures

    Get PDF
    The concepts of losslessness and maximum available power are basic to the low-sensitivity properties of doubly terminated lossless networks of the continuous-time domain. Based on similar concepts, we develop a new theory for low-sensitivity discrete-time filter structures. The mathematical setup for the development is the bounded-real property of transfer functions and matrices. Starting from this property, we derive procedures for the synthesis of any stable digital filter transfer function by means of a low-sensitivity structure. Most of the structures generated by this approach are interconnections of a basic building block called digital "two-pair," and each two-pair is characterized by a lossless bounded-real (LBR) transfer matrix. The theory and synthesis procedures also cover special cases such as wave digital filters, which are derived from continuous-time networks, and digital lattice structures, which are closely related to unit elements of distributed network theory

    A new approach to the realization of low-sensitivity IIR digital filters

    Get PDF
    A new implementation of an IIR digital filter transfer function is presented that is structurally passive and, hence, has extremely low pass-band sensitivity. The structure is based on a simple parallel interconnection of two all-pass sections, with each section implemented in a structurally lossless manner. The structure shares a number of properties in common with wave lattice digital filters. Computer simulation results verifying the low-sensitivity feature are included, along with results on roundoff noise/dynamic range interaction. A large number of alternatives is available for the implementation of the all-pass sections, giving rise to the well-known wave lattice digital filters as a specific instance of the implementation
    corecore