13,451 research outputs found

    A simple polynomial time algorithm to approximate the permanent within a simply exponential factor

    Full text link
    We present a simple randomized polynomial time algorithm to approximate the mixed discriminant of nn positive semidefinite nĂ—nn \times n matrices within a factor 2O(n)2^{O(n)}. Consequently, the algorithm allows us to approximate in randomized polynomial time the permanent of a given nĂ—nn \times n non-negative matrix within a factor 2O(n)2^{O(n)}. When applied to approximating the permanent, the algorithm turns out to be a simple modification of the well-known Godsil-Gutman estimator

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    New Results for the MAP Problem in Bayesian Networks

    Full text link
    This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. First, it is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure). Such proofs extend previous complexity results for the problem. Inapproximability results are also derived in the case of trees if the number of states per variable is not bounded. Although the problem is shown to be hard and inapproximable even in very simple scenarios, a new exact algorithm is described that is empirically fast in networks of bounded treewidth and bounded number of states per variable. The same algorithm is used as basis of a Fully Polynomial Time Approximation Scheme for MAP under such assumptions. Approximation schemes were generally thought to be impossible for this problem, but we show otherwise for classes of networks that are important in practice. The algorithms are extensively tested using some well-known networks as well as random generated cases to show their effectiveness.Comment: A couple of typos were fixed, as well as the notation in part of section 4, which was misleading. Theoretical and empirical results have not change

    Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval

    Full text link
    We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.Comment: 15 page

    Semi-automatic selection of summary statistics for ABC model choice

    Full text link
    A central statistical goal is to choose between alternative explanatory models of data. In many modern applications, such as population genetics, it is not possible to apply standard methods based on evaluating the likelihood functions of the models, as these are numerically intractable. Approximate Bayesian computation (ABC) is a commonly used alternative for such situations. ABC simulates data x for many parameter values under each model, which is compared to the observed data xobs. More weight is placed on models under which S(x) is close to S(xobs), where S maps data to a vector of summary statistics. Previous work has shown the choice of S is crucial to the efficiency and accuracy of ABC. This paper provides a method to select good summary statistics for model choice. It uses a preliminary step, simulating many x values from all models and fitting regressions to this with the model as response. The resulting model weight estimators are used as S in an ABC analysis. Theoretical results are given to justify this as approximating low dimensional sufficient statistics. A substantive application is presented: choosing between competing coalescent models of demographic growth for Campylobacter jejuni in New Zealand using multi-locus sequence typing data
    • …
    corecore