25,349 research outputs found

    Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials

    Full text link
    Dense conditional random fields (CRFs) have become a popular framework for modelling several problems in computer vision such as stereo correspondence and multi-class semantic segmentation. By modelling long-range interactions, dense CRFs provide a labelling that captures finer detail than their sparse counterparts. Currently, the state-of-the-art algorithm performs mean-field inference using a filter-based method but fails to provide a strong theoretical guarantee on the quality of the solution. A question naturally arises as to whether it is possible to obtain a maximum a posteriori (MAP) estimate of a dense CRF using a principled method. Within this paper, we show that this is indeed possible. We will show that, by using a filter-based method, continuous relaxations of the MAP problem can be optimised efficiently using state-of-the-art algorithms. Specifically, we will solve a quadratic programming (QP) relaxation using the Frank-Wolfe algorithm and a linear programming (LP) relaxation by developing a proximal minimisation framework. By exploiting labelling consistency in the higher-order potentials and utilising the filter-based method, we are able to formulate the above algorithms such that each iteration has a complexity linear in the number of classes and random variables. The presented algorithms can be applied to any labelling problem using a dense CRF with sparse higher-order potentials. In this paper, we use semantic segmentation as an example application as it demonstrates the ability of the algorithm to scale to dense CRFs with large dimensions. We perform experiments on the Pascal dataset to indicate that the presented algorithms are able to attain lower energies than the mean-field inference method

    Highly Efficient Regression for Scalable Person Re-Identification

    Full text link
    Existing person re-identification models are poor for scaling up to large data required in real-world applications due to: (1) Complexity: They employ complex models for optimal performance resulting in high computational cost for training at a large scale; (2) Inadaptability: Once trained, they are unsuitable for incremental update to incorporate any new data available. This work proposes a truly scalable solution to re-id by addressing both problems. Specifically, a Highly Efficient Regression (HER) model is formulated by embedding the Fisher's criterion to a ridge regression model for very fast re-id model learning with scalable memory/storage usage. Importantly, this new HER model supports faster than real-time incremental model updates therefore making real-time active learning feasible in re-id with human-in-the-loop. Extensive experiments show that such a simple and fast model not only outperforms notably the state-of-the-art re-id methods, but also is more scalable to large data with additional benefits to active learning for reducing human labelling effort in re-id deployment

    Content-based Propagation of User Markings for Interactive Segmentation of Patterned Images

    Full text link
    Efficient and easy segmentation of images and volumes is of great practical importance. Segmentation problems that motivate our approach originate from microscopy imaging commonly used in materials science, medicine, and biology. We formulate image segmentation as a probabilistic pixel classification problem, and we apply segmentation as a step towards characterising image content. Our method allows the user to define structures of interest by interactively marking a subset of pixels. Thanks to the real-time feedback, the user can place new markings strategically, depending on the current outcome. The final pixel classification may be obtained from a very modest user input. An important ingredient of our method is a graph that encodes image content. This graph is built in an unsupervised manner during initialisation and is based on clustering of image features. Since we combine a limited amount of user-labelled data with the clustering information obtained from the unlabelled parts of the image, our method fits in the general framework of semi-supervised learning. We demonstrate how this can be a very efficient approach to segmentation through pixel classification.Comment: 9 pages, 7 figures, PDFLaTe

    Latest developments in 3D analysis of geomaterials by Morpho+

    Get PDF
    At the Centre for X-ray Tomography of the Ghent University (Belgium) (www.ugct.ugent.be) besides hardware development for high-resolution X-ray CT scanners, a lot of progress is being made in the field of 3D analysis of the scanned samples. Morpho+ is a flexible 3D analysis software which provides the necessary petrophysical parameters of the scanned samples in 3D. Although Morpho+ was originally designed to provide any kind of 3D parameter, it contains some specific features especially designed for the analysis of geomaterial properties like porosity, partial porosity, pore-size distribution, grain size, grain orientation and surface determination. Additionally, the results of the 3D analysis can be visualized which enables to understand and interpret the analysis results in a straightforward way. The complementarities between high-quality X-ray CT images and flexible 3D software are opening up new gateways in the study of geomaterials
    • …
    corecore