327 research outputs found

    Linear Tabulated Resolution Based on Prolog Control Strategy

    Full text link
    Infinite loops and redundant computations are long recognized open problems in Prolog. Two ways have been explored to resolve these problems: loop checking and tabling. Loop checking can cut infinite loops, but it cannot be both sound and complete even for function-free logic programs. Tabling seems to be an effective way to resolve infinite loops and redundant computations. However, existing tabulated resolutions, such as OLDT-resolution, SLG- resolution, and Tabulated SLS-resolution, are non-linear because they rely on the solution-lookup mode in formulating tabling. The principal disadvantage of non-linear resolutions is that they cannot be implemented using a simple stack-based memory structure like that in Prolog. Moreover, some strictly sequential operators such as cuts may not be handled as easily as in Prolog. In this paper, we propose a hybrid method to resolve infinite loops and redundant computations. We combine the ideas of loop checking and tabling to establish a linear tabulated resolution called TP-resolution. TP-resolution has two distinctive features: (1) It makes linear tabulated derivations in the same way as Prolog except that infinite loops are broken and redundant computations are reduced. It handles cuts as effectively as Prolog. (2) It is sound and complete for positive logic programs with the bounded-term-size property. The underlying algorithm can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: To appear as the first accepted paper in Theory and Practice of Logic Programming (http://www.cwi.nl/projects/alp/TPLP

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio

    A two-level structure for advanced space power system automation

    Get PDF
    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed

    The performance evaluation of interpreter based computer systems

    Get PDF
    PhD ThesisThis thesis explores the problem of making accurate assessments of the performance of high level language interpreter programs which are embedded in some more complex system. The overall system performance will be determined by all the software and hardware components present; but in order either to analyse and improve particular components, or to select between alternative versions of components, the concept of the performance of individual components is important. A model is developed for the abstract behaviour of software components playing the role of an interpreter by considering their interaction with the program code which is being interpreted and with the underlying virtual machine which is, in turn, interpreting them. This model enables a flexible definition of performance by relating the interactions in which an interpreter takes part. A methodology is recommended for assessing experimentally the performances defined within such a framework. The performances of an interesting selection of pseudo-machine and high level interpreter implementations of Lispkit and Prolog are then assessed and conclusions drawn.United Kingdom Science Research Counci
    corecore