43,482 research outputs found

    On solving systems of random linear disequations

    Get PDF
    An important subcase of the hidden subgroup problem is equivalent to the shift problem over abelian groups. An efficient solution to the latter problem would serve as a building block of quantum hidden subgroup algorithms over solvable groups. The main idea of a promising approach to the shift problem is reduction to solving systems of certain random disequations in finite abelian groups. The random disequations are actually generalizations of linear functions distributed nearly uniformly over those not containing a specific group element in the kernel. In this paper we give an algorithm which finds the solutions of a system of N random linear disequations in an abelian p-group A in time polynomial in N, where N=(log|A|)^{O(q)}, and q is the exponent of A.Comment: 13 page

    Rank 2 Local Systems, Barsotti-Tate Groups, and Shimura Curves

    Full text link
    We develop a descent criterion for KK-linear abelian categories. Using recent advances in the Langlands correspondence due to Abe, we build a correspondence between certain rank 2 local systems and certain Barsotti-Tate groups on complete curves over a finite field. We conjecture that such Barsotti-Tate groups "come from" a family of fake elliptic curves. As an application of these ideas, we provide a criterion for being a Shimura curve over Fq\mathbb{F}_q. Along the way, we formulate a conjecture on the field-of-coefficients of certain compatible systems.Comment: 30 pages. Part of author's PhD thesis. Comments welcome

    Non-binary Unitary Error Bases and Quantum Codes

    Get PDF
    Error operator bases for systems of any dimension are defined and natural generalizations of the bit/sign flip error basis for qubits are given. These bases allow generalizing the construction of quantum codes based on eigenspaces of Abelian groups. As a consequence, quantum codes can be constructed from linear codes over \ints_n for any nn. The generalization of the punctured code construction leads to many codes which permit transversal (i.e. fault tolerant) implementations of certain operations compatible with the error basis.Comment: 10 pages, preliminary repor

    New polynomial and multidimensional extensions of classical partition results

    Get PDF
    In the 1970s Deuber introduced the notion of (m,p,c)(m,p,c)-sets in N\mathbb{N} and showed that these sets are partition regular and contain all linear partition regular configurations in N\mathbb{N}. In this paper we obtain enhancements and extensions of classical results on (m,p,c)(m,p,c)-sets in two directions. First, we show, with the help of ultrafilter techniques, that Deuber's results extend to polynomial configurations in abelian groups. In particular, we obtain new partition regular polynomial configurations in Zd\mathbb{Z}^d. Second, we give two proofs of a generalization of Deuber's results to general commutative semigroups. We also obtain a polynomial version of the central sets theorem of Furstenberg, extend the theory of (m,p,c)(m,p,c)-systems of Deuber, Hindman and Lefmann and generalize a classical theorem of Rado regarding partition regularity of linear systems of equations over N\mathbb{N} to commutative semigroups.Comment: Some typos, including a terminology confusion involving the words `clique' and `shape', were fixe

    Additive Cellular Automata Over Finite Abelian Groups: Topological and Measure Theoretic Properties

    Get PDF
    We study the dynamical behavior of D-dimensional (D >= 1) additive cellular automata where the alphabet is any finite abelian group. This class of discrete time dynamical systems is a generalization of the systems extensively studied by many authors among which one may list [Masanobu Ito et al., 1983; Giovanni Manzini and Luciano Margara, 1999; Giovanni Manzini and Luciano Margara, 1999; Jarkko Kari, 2000; Gianpiero Cattaneo et al., 2000; Gianpiero Cattaneo et al., 2004]. Our main contribution is the proof that topologically transitive additive cellular automata are ergodic. This result represents a solid bridge between the world of measure theory and that of topology theory and greatly extends previous results obtained in [Gianpiero Cattaneo et al., 2000; Giovanni Manzini and Luciano Margara, 1999] for linear CA over Z_m i.e. additive CA in which the alphabet is the cyclic group Z_m and the local rules are linear combinations with coefficients in Z_m. In our scenario, the alphabet is any finite abelian group and the global rule is any additive map. This class of CA strictly contains the class of linear CA over Z_m^n, i.e.with the local rule defined by n x n matrices with elements in Z_m which, in turn, strictly contains the class of linear CA over Z_m. In order to further emphasize that finite abelian groups are more expressive than Z_m we prove that, contrary to what happens in Z_m, there exist additive CA over suitable finite abelian groups which are roots (with arbitrarily large indices) of the shift map. As a consequence of our results, we have that, for additive CA, ergodic mixing, weak ergodic mixing, ergodicity, topological mixing, weak topological mixing, topological total transitivity and topological transitivity are all equivalent properties. As a corollary, we have that invertible transitive additive CA are isomorphic to Bernoulli shifts. Finally, we provide a first characterization of strong transitivity for additive CA which we suspect it might be true also for the general case

    Adding homomorphisms to commutative/monoidal theories or : how algebra can help in equational unification

    Get PDF
    Two approaches to equational unification can be distinguished. The syntactic approach relies heavily on the syntactic structure of the identities that define the equational theory. The semantic approach exploits the structure of the algebras that satisfy the theory. With this paper we pursue the semantic approach to unification. We consider the class of theories for which solving unification problems is equivalent to solving systems of linear equations over a semiring. This class has been introduced by the authors independently of each other as commutative theories (Baader) and monoidal theories (Nutt). The class encompasses important examples like the theories of abelian monoids, idempotent abelian monoids, and abelian groups. We identify a large subclass of commutative/monoidal theories that are of unification type zero by studying equations over the corresponding semiring. As a second result, we show with methods from linear algebra that unitary and finitary commutative/monoidal theories do not change their unification type when they are augmented by a finite monoid of homomorphisms, and how algorithms for the extended theory can be obtained from algorithms for the basic theory. The two results illustrate how using algebraic machinery can lead to general results and elegant proofs in unification theory
    • …
    corecore