198 research outputs found

    Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress

    Get PDF
    "© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” Upon publication, authors are asked to include either a link to the abstract of the published article in IEEE Xplore®, or the article’s Digital Object Identifier (DOI).Many applications require a timely acquisition of high spatial and spectral resolution remote sensing data. This is often not achievable since spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while airborne sensors mounted on a manned aircraft are too expensive to acquire a high temporal resolution. This gap between information needs and data availability inspires research on using Remotely Piloted Aircraft Systems (RPAS) to capture the desired high spectral and spatial information, furthermore providing temporal flexibility. Present hyperspectral imagers on board lightweight RPAS are still rare, due to the operational complexity, sensor weight, and instability. This paper looks into the use of a hyperspectral-hyperspatial fusion technique for an improved biophysical parameter retrieval and physiological assessment in agricultural crops. First, a biophysical parameter extraction study is performed on a simulated citrus orchard. Subsequently, the unmixing-based fusion is applied on a real test case in commercial citrus orchards with discontinuous canopies, in which a more efficient and accurate estimation of water stress is achieved by fusing thermal hyperspatial and hyperspectral (APEX) imagery. Narrowband reflectance indices that have proven their effectiveness as previsual indicators of water stress, such as the Photochemical Reflectance Index (PRI), show a significant increase in tree water-stress detection when applied on the fused dataset compared to the original hyperspectral APEX dataset (R-2 = 0.62, p 0.1). Maximal R-2 values of 0.93 and 0.86 are obtained by a linear relationship between the vegetation index and the resp., water and chlorophyll, parameter content maps.This work was supported in part by the Belgian Science Policy Office in the frame of the Stereo II program (Hypermix project-SR/00/141), in part by the project Chameleon of the Flemish Agency for Innovation by Science and Technology (IWT), and in part by the Spanish Ministry of Science and Education (MEC) for the projects AGL2012-40053-C03-01 and CONSOLIDER RIDECO (CSD2006-67). The European Facility for Airborne Research EUFAR (www.eufar.net) funded the flight campaign (Transnational Access Project 'Hyper-Stress'). The work of D. S. Intrigliolo was supported by the Spanish Ministry of Economy and Competitiveness program "Ramon y Cajal."Delalieux, S.; Zarco-Tejada, PJ.; Tits, L.; Jiménez Bello, MÁ.; Intrigliolo Molina, DS.; Somers, B. (2014). Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7(6):2571-2582. https://doi.org/10.1109/JSTARS.2014.2330352S257125827

    Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis

    Get PDF
    The impervious surface area (ISA) is a key indicator of urbanization, which brings out serious adverse environmental and ecological consequences. The ISA is often estimated from remotely sensed data via spectral mixture analysis (SMA). However, accurate extraction of ISA using SMA is compromised by two major factors, endmember spectral variability and plant phenology. This study developed a novel approach that incorporates phenology with Fisher transformation into a conventional linear spectral mixture analysis (PF-LSMA) to address these challenges. Four endmembers, high albedo, low albedo, evergreen vegetation, and seasonally exposed soil (H-L-EV-SS) were identified for PF-LSMA, considering the phenological characteristic of Shanghai. Our study demonstrated that the PF-LSMA effectively reduced the within-endmember spectral signature variation and accounted for the endmember phenology effects, and thus well-discriminated impervious surface from seasonally exposed soil, enhancing the accuracy of ISA extraction. The ISA fraction map produced by PF-LSMA (RMSE = 0.1112) outperforms the single-date image Fisher transformed unmixing method (F-LSMA) (RMSE = 0.1327) and the other existing major global ISA products. The PF-LSMA was implemented on the Google Earth Engine platform and thus can be easily adapted to extract ISA in other places with similar climate conditions.Peer Reviewe

    An evaluation of Multiple Endmember Spectral Mixture Analysis applied to Landsat 8 OLI images for mapping land cover in southern Africa\u27s Savanna.

    Get PDF
    Mapping land cover in southern Africa’s savannas using traditional pixel based remote sensing techniques can be very challenging due to the heterogeneity of its vegetation structure and the spectral difficulty in separating similar land covers across various land uses. In order to overcome these complications, a Multiple Endmember Spectral Mixture Analysis (MESMA) provides a potential remote sensing approach to quantify spectral variation in the physical environment at a subpixel level. The MESMA approach was applied in the study area of the Mayuni Conservancy, in Namibia. Results show that 32.3% of the study area is covered by photosynthetic vegetation (PV), 32.0% by non-photosynthetic vegetation (NPV), 25.2% by bare soil (B) and 10.6% by shade. Post-classification validation shows that MESMA presented a moderate performance in estimating the proportions of land cover types in the study area. However the validation process is limited to the available resources and carries great subjectivity. It is concluded that future research on the matter should include a more consistent investigation on the endmember selection methodology and expand the study area inside of the same ecosystem

    Burn severity mapping from Landsat MESMA fraction images and Land Surface Temperature

    Get PDF
    14 p.Forest fires are incidents of great importance in Mediterranean environments. Landsat data have proven to be suitable for evaluating post-fire vegetation damage and determining different levels of burn severity, which is crucial for planning post-fire rehabilitation. This study assessed the utility of combined Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images and Land Surface Temperature (LST) to accurately map burn severity. We studied a large convection- dominated wildfire, which occurred on 19–21 September 2012 in Spain, in a zone dominated by Pinus pinaster Ait. Burn severity degree (low, moderate, and high) was measured 2–3 months after fire in 111 field plots using the Composite Burn Index (CBI). Four fraction images were generated using MESMA from the reflective bands of a post-fire Landsat 7 Enhanced Thematic Mapper (ETM +) image: 1.-char, 2.-green vegetation (GV), 3.-non-photosynthetic vegetation and soil (NPVS) and 4.-shade. The thermal band was converted to LST using a single channel algorithm. Next, Multinomial Logistic Regression (MLR) was used to obtain the probability of each burn severity level from MESMA fraction images and LST. Finally, a burn severity map was generated from the probability images and independently validated using an error matrix, producer and user accuracies per class, and κ statistic. MLR identified the char fraction image and LST as the only significant explanatory variables when burn severity acted as the response variable. Two burn severity degrees (low-moderate and high) were finally considered to build the final burn severity map. In this way, we reached a higher accuracy (κ = 0.79) than using the original three burn severity levels (κ = 0.66). Our study demonstrates the validity of combining fraction images and LST from Landsat data to map burn severity accurately in Mediterranean countriesS

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Analyzing the Adoption, Cropping Rotation, and Impact of Winter Cover Crops in the Mississippi Alluvial Plain (MAP) Region through Remote Sensing Technologies

    Get PDF
    This dissertation explores the application of remote sensing technologies in conservation agriculture, specifically focusing on identifying and mapping winter cover crops and assessing voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology examines the last 30 years of thematic research, development, and trends in remote sensing applied to conservation agriculture from a global perspective. The review uncovers a growing interest in remote sensing-based research in conservation agriculture and emphasizes the necessity for further studies dedicated to conservation practices. Among the 68 articles examined, 94% of studies utilized a pixel-based classification method, while only 6% employed an object-based approach. The analysis also revealed a thematic shift over time, with tillage practices being extensively studied before 2005, followed by a focus on crop residue from 2004 to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These findings highlight the evolving research landscape and provide insights into the trends within remote sensing-based conservation agriculture studies. The second chapter presents a methodological framework for identifying and mapping winter cover crops. The framework utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a significant increase (34%) in model-predicted cover crop adoption over the study period between 2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently map the growing season\u27s length and cover crops\u27 phenological characteristics. The third chapter assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being prominent. This dissertation enhances our understanding of the role of remote sensing in conservation agriculture with a particular focus on winter cover crops. These insights are valuable for policymakers, stakeholders, and researchers seeking to promote sustainable agricultural practices and increased cover crop adoption. The study also underscores the significance of integrating remote sensing technologies into agricultural decision-making processes and highlights the importance of collaboration among policymakers, researchers, and producers. By leveraging the capabilities of remote sensing, it will enhance conservation agriculture contribution to long-term environmental sustainability and agricultural resilience. Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, Voluntary adoption, Cropping patterns, Sustainable agricultural practice

    Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis

    Get PDF
    The impervious surface area (ISA) is a key indicator of urbanization, which brings out serious adverse environmental and ecological consequences. The ISA is often estimated from remotely sensed data via spectral mixture analysis (SMA). However, accurate extraction of ISA using SMA is compromised by two major factors, endmember spectral variability and plant phenology. This study developed a novel approach that incorporates phenology with Fisher transformation into a conventional linear spectral mixture analysis (PF-LSMA) to address these challenges. Four endmembers, high albedo, low albedo, evergreen vegetation, and seasonally exposed soil (H-L-EV-SS) were identified for PF-LSMA, considering the phenological characteristic of Shanghai. Our study demonstrated that the PF-LSMA effectively reduced the within-endmember spectral signature variation and accounted for the endmember phenology effects, and thus well-discriminated impervious surface from seasonally exposed soil, enhancing the accuracy of ISA extraction. The ISA fraction map produced by PF-LSMA (RMSE = 0.1112) outperforms the single-date image Fisher transformed unmixing method (F-LSMA) (RMSE = 0.1327) and the other existing major global ISA products. The PF-LSMA was implemented on the Google Earth Engine platform and thus can be easily adapted to extract ISA in other places with similar climate conditions
    corecore