17,552 research outputs found

    Lower Bounds for Symbolic Computation on Graphs: Strongly Connected Components, Liveness, Safety, and Diameter

    Full text link
    A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and co-liveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D)O(D) symbolic operations, where DD is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires O~(nD)\tilde{O}(n \sqrt{D}) symbolic steps to achieve a (1+Ï”)(1+\epsilon)-approximation for any constant Ï”>0\epsilon > 0. This compares to O(n⋅D)O(n \cdot D) symbolic steps for the (naive) exact algorithm and O(D)O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of Gentilini et al., showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components

    On tree-decompositions of one-ended graphs

    Get PDF
    A graph is one-ended if it contains a ray (a one way infinite path) and whenever we remove a finite number of vertices from the graph then what remains has only one component which contains rays. A vertex vv {\em dominates} a ray in the end if there are infinitely many paths connecting vv to the ray such that any two of these paths have only the vertex vv in common. We prove that if a one-ended graph contains no ray which is dominated by a vertex and no infinite family of pairwise disjoint rays, then it has a tree-decomposition such that the decomposition tree is one-ended and the tree-decomposition is invariant under the group of automorphisms. This can be applied to prove a conjecture of Halin from 2000 that the automorphism group of such a graph cannot be countably infinite and solves a recent problem of Boutin and Imrich. Furthermore, it implies that every transitive one-ended graph contains an infinite family of pairwise disjoint rays

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset C⊆V(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ≄3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ−1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size n−nΔ−1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG
    • 

    corecore