268 research outputs found

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    D11.2 Consolidated results on the performance limits of wireless communications

    Get PDF
    Deliverable D11.2 del projecte europeu NEWCOM#The report presents the Intermediate Results of N# JRAs on Performance Limits of Wireless Communications and highlights the fundamental issues that have been investigated by the WP1.1. The report illustrates the Joint Research Activities (JRAs) already identified during the first year of the project which are currently ongoing. For each activity there is a description, an illustration of the adherence and relevance with the identified fundamental open issues, a short presentation of the preliminary results, and a roadmap for the joint research work in the next year. Appendices for each JRA give technical details on the scientific activity in each JRA.Peer ReviewedPreprin

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Local network coding on packet erasure channels -- From Shannon capacity to stability region

    Get PDF
    Network Coding (NC) has emerged as a ubiquitous technique of communication networks and has extensive applications in both practical implementations and theoretical developments. While the Avalanche P2P file system from Microsoft, the MORE routing protocol, and the COPE coding architecture from MIT have implemented the idea of NC and exhibited promising performance improvements, a significant part of the success of NC stems from the continuing theoretic development of NC capacity, e.g., the Shannon capacity results for the single-flow multi-cast network and the packet erasure broadcast channel with feedback. However, characterizing the capacity for the practical wireless multi-flow network setting remains a challenging topic in NC. For example, the difficulties of finding the optimal NC strategy over multiple flows under varying-channel qualities and the rate adaption scenarios hinder any further advancement in this area. Despite the difficulty of characterizing the full capacity for large networks, there are evidences showing that even when using only local operations, NC can still recover substantial NC gain. We believe that a deeper understanding of multi-flow local network coding will play a key role in designing the next-generation high-throughput coding-based wireless network architecture. This thesis consists of three parts. In the first part, we characterize the full Shannon capacity region of the COPE principle when applied to a 2-flow wireless butterfly network with broadcast packet erasure channels. The capacity results allow for random overhearing probabilities, arbitrary scheduling policies, network-wide channel state information (CSI) feedback after each transmission, and potential use of non-linear network codes. We propose a theoretical outer bound and a new class of linear network codes, named the Space-Based Linear Network Coding (SBLNC), that achieves the capacity outer bound. Numerical experiments show that SBLNC provides close-to-optimal throughput even in the scenario with opportunistic routing. In the second part, we further consider the complete network dynamics of stochastic arrivals and queueing and study the corresponding stability region. Based on dynamic packet arrivals, the resulting solution would be one step closer to practical implementation, when compared to the previous block-code-based capacity study. For the 2-flow downlink scenario, we propose the first opportunistic INC + scheduling solution that is provably optimal for time-varying channels, i.e., the corresponding stability region matches the optimal Shannon capacity. Specifically, we first introduce a new binary INC operation, which is distinctly different from the traditional wisdom of XORing two overheard packets. We then develop a queue-length-based scheduling scheme, which, with the help of the new INC operation, can robustly and optimally adapt to time-varying channel quality. We then show that the proposed algorithm can be easily extended for rate adaptation and it again robustly achieves the optimal throughput. In the third part, we propose an 802.11-based MAC layer protocol which incorporates the rate adaption solution developed in the second part. The new MAC protocol realizes the promised intersession network coding gain for two-flow downlink traffic with short decoding delay. Furthermore, we delicately retain the CSMA-CA distributed contention mechanism with only 17 bits new header field changes, and carefully ensure the backward compatibility. In summary, the new solution demonstrates concrete throughput improvement without alternating the too much packet-by-packet traffic behavior. Such a feature is critical in practical implementation since it allows the network coding solution to be transparent to any arbitrary upper layer applications

    On the role of feedback in network coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 143-149).Network coding has emerged as a new approach to operating communication networks, with a promise of improved efficiency in the form of higher throughput, especially in lossy conditions. In order to realize this promise in practice, the interfacing of network coding with existing network protocols must be understood well. Most current protocols make use of feedback in the form of acknowledgments (ACKs) for reliability, rate control and/or delay control. In this work, we propose a way to incorporate network coding within such a feedback-based framework, and study the various benefits of using feedback in a network coded system. More specifically, we propose a mechanism that provides a clean interface between network coding and TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the TCP congestion window. At the heart of our scheme is a new interpretation of ACKs - the receiver acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-compatible sliding-window implementation of network coding. Thus, with feedback, network coding can be performed in a completely online manner, without the need for batches or generations. Our scheme has the nice feature that packet losses on the link can be essentially masked from the congestion control algorithm by adding enough redundancy in the encoding process.(cont.) This results in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our scheme also allows intermediate nodes to perform re-encoding of the data packets. This in turn leads to a natural way of running TCP flows over networks that use multipath opportunistic routing along with network coding. We use the new type of ACKs to develop queue management algorithms for coded networks, which allow the queue size at nodes to track the true backlog in information with respect to the destination. We also propose feedback-based adaptive coding techniques that are aimed at reducing the decoding delay at the receivers. Different notions of decoding delay are considered, including an order-sensitive notion which assumes that packets are useful only when delivered in order. We study the asymptotic behavior of the expected queue size and delay, in the limit of heavy traffic.by Jay Kumar Sundararajan.Ph.D

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore