3,481 research outputs found

    Identification and parameter-varying decoupling of a 3-DOF platform with manipulator

    Get PDF
    The paper describes identification and a new parameter-varying decoupling method for a 3-degree-of-freedom (DOF) platform with a manipulator on top of it, which is magnetically levitated by 9 voice-coil actuators. The identification has been performed in closed-loop using two different indirect approaches. In the first approach time-domain data of the system were processed using Ho-Kalman algorithm. The second approach was based on frequency-response measurements. The 3 DOFs of the platform are coupled and the coupling is even varying as the manipulator on top is moving. In order to design separate SISO controllers for each DOF of the platform, a new decoupling method has been developed which uses frequency response measurements of the system obtained for different positions of the manipulator

    Vibration isolation control of a contactless electromagnetic suspension system

    Get PDF

    Grasp planning under uncertainty

    Get PDF
    The planning of dexterous grasps for multifingered robot hands operating in uncertain environments is covered. A sensor-based approach to the planning of a reach path prior to grasping is first described. An on-line, joint space finger path planning algorithm for the enclose phase of grasping was then developed. The algorithm minimizes the impact momentum of the hand. It uses a Preshape Jacobian matrix to map task-level hand preshape requirements into kinematic constraints. A master slave scheme avoids inter-finger collisions and reduces the dimensionality of the planning problem
    corecore