155 research outputs found

    A New Proof of P-time Completeness of Linear Lambda Calculus

    Full text link
    We give a new proof of P-time completeness of Linear Lambda Calculus, which was originally given by H. Mairson in 2003. Our proof uses an essentially different Boolean type from the type Mairson used. Moreover the correctness of our proof can be machined-checked using an implementation of Standard ML

    An Embedding of the BSS Model of Computation in Light Affine Lambda-Calculus

    Full text link
    This paper brings together two lines of research: implicit characterization of complexity classes by Linear Logic (LL) on the one hand, and computation over an arbitrary ring in the Blum-Shub-Smale (BSS) model on the other. Given a fixed ring structure K we define an extension of Terui's light affine lambda-calculus typed in LAL (Light Affine Logic) with a basic type for K. We show that this calculus captures the polynomial time function class FP(K): every typed term can be evaluated in polynomial time and conversely every polynomial time BSS machine over K can be simulated in this calculus.Comment: 11 pages. A preliminary version appeared as Research Report IAC CNR Roma, N.57 (11/2004), november 200

    Soft Linear Logic and Polynomial Complexity Classes

    Get PDF
    AbstractWe describe some results inspired to Lafont's Soft Linear Logic (SLL) which is a subsystem of second-order linear logic with restricted rules for exponentials, correct and complete for polynomial time computations. SLL is the basis for the design of type assignment systems for lambda-calculus, characterizing the complexity classes PTIME, PSPACE and NPTIME. PTIME is characterized by a type assignments system where types are a proper subset of SLL formulae. The characterization consists in the fact that a well typed term can be reduced to normal form by a number of beta-reductions polynomial in its lenght, and moreover all polynomial time functions can be computed by well typed terms. PSPACE is characterized by a type assignment system obtained from the previous one, by extending the set of types by a type for booleans, and the lambda-calculus by two boolean constants and a conditional constructor. The system assigns types to terms in such a way that the evaluation of programs (closed terms of type boolean) can be performed carefully in polynomial space. Moreover all polynomial space decision problems can be computed by terms typable in this system. In order to characterize NPTIME we extend the lambda-calculus by a nondeterministic choice operator, and the system by a rule for dealing with this new term constructor

    A type system for PSPACE derived from light linear logic

    Full text link
    We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.Comment: In Proceedings DICE 2011, arXiv:1201.034

    Linear lambda terms as invariants of rooted trivalent maps

    Full text link
    The main aim of the article is to give a simple and conceptual account for the correspondence (originally described by Bodini, Gardy, and Jacquot) between α\alpha-equivalence classes of closed linear lambda terms and isomorphism classes of rooted trivalent maps on compact oriented surfaces without boundary, as an instance of a more general correspondence between linear lambda terms with a context of free variables and rooted trivalent maps with a boundary of free edges. We begin by recalling a familiar diagrammatic representation for linear lambda terms, while at the same time explaining how such diagrams may be read formally as a notation for endomorphisms of a reflexive object in a symmetric monoidal closed (bi)category. From there, the "easy" direction of the correspondence is a simple forgetful operation which erases annotations on the diagram of a linear lambda term to produce a rooted trivalent map. The other direction views linear lambda terms as complete invariants of their underlying rooted trivalent maps, reconstructing the missing information through a Tutte-style topological recurrence on maps with free edges. As an application in combinatorics, we use this analysis to enumerate bridgeless rooted trivalent maps as linear lambda terms containing no closed proper subterms, and conclude by giving a natural reformulation of the Four Color Theorem as a statement about typing in lambda calculus.Comment: accepted author manuscript, posted six months after publicatio

    Light types for polynomial time computation in lambda-calculus

    Full text link
    We propose a new type system for lambda-calculus ensuring that well-typed programs can be executed in polynomial time: Dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of Light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms: subject reduction is satisfied and a well-typed term admits a polynomial bound on the reduction by any strategy. We establish that as LAL, DLAL allows to represent all polytime functions. Finally we give a type inference procedure for propositional DLAL.Comment: 20 pages (including 10 pages of appendix). (revised version; in particular section 5 has been modified). A short version is to appear in the proceedings of the conference LICS 2004 (IEEE Computer Society Press
    • …
    corecore