103,651 research outputs found

    Block QPSK modulation codes with two levels of error protection

    Get PDF
    A class of block QPSK modulation codes for unequal error protection (UEP) is presented. These codes are particularly suitable either for broadcast channels or for communication systems where parts of the information messages are more important than others. An example of the latter is coded speech transmission. Not much is known on the application of block UEP codes in combined coding and modulation schemes. We exhibit a method to combine binary linear UEP (LUEP) block codes of even length, using a Gray mapping, with a QPSK signal set to construct efficient block QPSK modulation codes with nonuniform error protection capabilities for bandwidth efficient transmission over AWGN (additive white Gaussian noise) and Rayleigh fading channels

    QPSK Block-Modulation Codes for Unequal Error Protection

    Get PDF
    Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated

    Neural networks, error-correcting codes, and polynomials over the binary n-cube

    Get PDF
    Several ways of relating the concept of error-correcting codes to the concept of neural networks are presented. Performing maximum-likelihood decoding in a linear block error-correcting code is shown to be equivalent to finding a global maximum of the energy function of a certain neural network. Given a linear block code, a neural network can be constructed in such a way that every codeword corresponds to a local maximum. The connection between maximization of polynomials over the n-cube and error-correcting codes is also investigated; the results suggest that decoding techniques can be a useful tool for solving such maximization problems. The results are generalized to both nonbinary and nonlinear codes

    Multilevel Block Coded 8-PSK Modulations Using Unequal Error Protection Codes for the Rayleigh Fading Channel

    Get PDF
    This paper introduces new block coded 8-PSK modulations with unequal error protection (UEP) capabilities for Rayleigh fading channels. The design of efficient block coded modulations (BCM) over 8-PSK signal sets, for the specific purpose of UEP, over Rayleigh fading channels is considered. UEP is desirable in communications systems where part of the source information is more important, or error sensitive, such as the transmission of coded speech and data broadcasting. The proposed block modulation codes are based on the multilevel construction of Imai and Hirakawa (1977). It is shown that the use of binary linear UEP (LUEP) codes as component codes in one or two of the encoding levels provides, in addition to superior UEP capabilities, a higher error performance, at the expense of a very modest reduction in bandwidth efficiency, with respect to conventional multilevel codes. Computer simulation results show that, over a Rayleigh fading channel, a significant improvement in the coding gain is obtained by the use of binary LUEP codes as constituent codes in the multilevel construction
    corecore