2,055 research outputs found

    Covariant coarse-graining of inhomogeneous dust flow in General Relativity

    Full text link
    A new definition of coarse-grained quantities describing the dust flow in General Relativity is proposed. It assigns the coarse--grained expansion, shear and vorticity to finite-size comoving domains of fluid in a covariant, coordinate-independent manner. The coarse--grained quantities are all quasi-local functionals, depending only on the geometry of the boundary of the considered domain. They can be thought of as relativistic generalizations of simple volume averages of local quantities in a flat space. The procedure is based on the isometric embedding theorem for S^2 surfaces and thus requires the boundary of the domain in question to have spherical topology and positive scalar curvature. We prove that in the limit of infinitesimally small volume the proposed quantities reproduce the local expansion, shear and vorticity. In case of irrotational flow we derive the time evolution for the coarse-grained quantities and show that its structure is very similar to the evolution equation for their local counterparts. Additional terms appearing in it may serve as a measure of the backreacton of small-scale inhomogeneities of the flow on the large-scale motion of the fluid inside the domain and therefore the result may be interesting in the context of the cosmological backreaction problem. We also consider the application of the proposed coarse-graining procedure to a number of known exact solutions of Einstein equations with dust and show that it yields reasonable results.Comment: 17 pages, 5 figures. Version accepted in Classical and Quantum Gravity

    A variational principle for fluid sloshing with vorticity, dynamically coupled to vessel motion

    Get PDF
    A variational principle is derived for two-dimensional incompressible rotational fluid flow with a free surface in a moving vessel when both the vessel and fluid motion are to be determined. The fluid is represented by a stream function and the vessel motion is represented by a path in the planar Euclidean group. Novelties in the formulation include how the pressure boundary condition is treated, the introduction of a stream function into the Euler-Poincar\'e variations, the derivation of free surface variations, and how the equations for the vessel path in the Euclidean group, coupled to the fluid motion, are generated automatically.Comment: 19 pages, 3 figure

    Unsupervised Monocular Depth Reconstruction of Non-Rigid Scenes

    Get PDF
    Monocular depth reconstruction of complex and dynamic scenes is a highly challenging problem. While for rigid scenes learning-based methods have been offering promising results even in unsupervised cases, there exists little to no literature addressing the same for dynamic and deformable scenes. In this work, we present an unsupervised monocular framework for dense depth estimation of dynamic scenes, which jointly reconstructs rigid and non-rigid parts without explicitly modelling the camera motion. Using dense correspondences, we derive a training objective that aims to opportunistically preserve pairwise distances between reconstructed 3D points. In this process, the dense depth map is learned implicitly using the as-rigid-as-possible hypothesis. Our method provides promising results, demonstrating its capability of reconstructing 3D from challenging videos of non-rigid scenes. Furthermore, the proposed method also provides unsupervised motion segmentation results as an auxiliary output

    Variational Autoencoders for Deforming 3D Mesh Models

    Full text link
    3D geometric contents are becoming increasingly popular. In this paper, we study the problem of analyzing deforming 3D meshes using deep neural networks. Deforming 3D meshes are flexible to represent 3D animation sequences as well as collections of objects of the same category, allowing diverse shapes with large-scale non-linear deformations. We propose a novel framework which we call mesh variational autoencoders (mesh VAE), to explore the probabilistic latent space of 3D surfaces. The framework is easy to train, and requires very few training examples. We also propose an extended model which allows flexibly adjusting the significance of different latent variables by altering the prior distribution. Extensive experiments demonstrate that our general framework is able to learn a reasonable representation for a collection of deformable shapes, and produce competitive results for a variety of applications, including shape generation, shape interpolation, shape space embedding and shape exploration, outperforming state-of-the-art methods.Comment: CVPR 201
    • …
    corecore